
CMPL

<Coliop|Coin> Mathematical Programming Language

Version 2.1.0

July 2024

Manual

M. Steglich, T. Schleiff

CMPL 2.1.0 - Manual 1

Table of contents
 1 About CMPL.. 6

 2 CMPL Language reference manual...7

 2.1 CMPL elements.. 7

 2.1.1 General structure of a CMPL model...7

 2.1.2 Statements and expressions..8

 2.1.3 Data types and arrays...10

 2.1.3.1 Data types.. 10

 2.1.3.2 Sets..11

 2.1.3.3 Arrays... 14

 2.1.3.4 Special values.. 16

 2.1.3.5 Functions and operations for arrays...17

 2.1.4 Object definitions.. 19

 2.1.4.1 Assignment attributes..19

 2.1.4.2 Sections..20

 2.1.4.3 Special forms of assignments..20

 2.1.4.4 Examples for definitions of parameters and variables..21

 2.1.5 User messages.. 22

 2.1.6 Code blocks.. 24

 2.1.6.1 Overview.. 24

 2.1.6.2 Code block symbols...25

 2.1.6.3 Control commands in code blocks...27

 2.1.6.4 Validity scope of symbols..28

 2.1.6.5 Validity scope of sections..29

 2.1.6.6 Code block as statement or expression..29

 2.1.6.7 Using a formula as a code block header...30

 2.1.6.8 Specific control structures...31

 2.1.6.9 Multithreading...35

 2.1.7 Names for rows and columns...35

 2.1.7.1 Name prefix.. 35

 2.1.7.2 Explicit control of the name prefix...36

 2.1.7.3 Explicitly set the name for rows and columns...38

 2.1.8 Extensions of CMPL...38

 2.1.8.1 Logical constraints...38

 2.1.8.2 Products of decision variables...39

 2.1.8.3 Container values and class-like constructs..40

 2.1.8.4 Special ordered sets...42

 2.1.8.5 Other model reformulations.. 43

 2.1.9 Short Language reference..44

 2.2 CMPL Header... 54

 2.2.1 CMPL Header elements..54

 2.2.2 Include... 55

 2.2.3 CmplData...56

CMPL 2.1.0 - Manual 2

 2.2.3.1 CmplData in CMPL Header..56

 2.2.3.2 CmplData file format.. 58

 2.2.4 CmplXlsData...62

 2.2.4.1 CmplXlsData in CMPL Header..62

 2.2.4.2 CmplXlsData file format..63

 2.3 Incompatibilities with Cmpl 1.12.. 71

 2.4 Examples... 74

 2.4.1 Selected decision problems..74

 2.4.1.1 The diet problem...74

 2.4.1.2 Production mix.. 76

 2.4.1.3 Production mix including thresholds and step-fixed costs..79

 2.4.1.4 Production mix with user-defined functions for thresholds and step-fixed costs...............80

 2.4.1.5 The knapsack problem...85

 2.4.1.6 The standard transport problem..88

 2.4.1.7 Transportation problem using a 2-tuple set..90

 2.4.1.8 Transhipment problem...93

 2.4.1.9 Transhipment problem using Excel via CmplXlsData..96

 2.4.1.10 Assignment problem...97

 2.4.1.11 Quadratic assignment problem..100

 2.4.1.12 Quadratic assignment problem using the solutionPool option.....................................103

 2.4.1.13 Generic travelling salesman problem..106

 2.4.2 Other selected examples..108

 2.4.2.1 Solving the knapsack problem...108

 2.4.2.2 Finding the maximum of a concave function using the bisection method......................110

 3 CMPL software package.. 111

 3.1 CMPL software package in a glance..111

 3.2 Download and installation.. 112

 3.3 CMPL.. 112

 3.3.1 Running CMPL... 112

 3.3.2 Usage of the CMPL command line tool..113

 3.3.3 Using CMPL with several solvers...117

 3.3.3.1 HiGHS...117

 3.3.3.2 SCIP...117

 3.3.3.3 CBC..118

 3.3.3.4 GLPK..119

 3.3.3.5 Gurobi..119

 3.3.3.6 CPLEX...120

 3.3.3.7 Other solvers...120

 3.4 Coliop.. 121

 3.5 CMPLServer.. 124

 3.5.1 Single server mode..126

 3.5.2 Grid mode.. 129

 3.5.3 Reliability and failover..133

CMPL 2.1.0 - Manual 3

 3.6 pyCMPL... 136

 3.7 jCMPL.. 137

 3.8 Input and output file formats...137

 3.8.1 Overview.. 137

 3.8.2 CMPL and CmplData..138

 3.8.3 Free-MPS..139

 3.8.4 CmplInstance..139

 3.8.5 ASCII or CSV result files... 142

 3.8.6 CmplSolutions...143

 3.8.7 CmplMessages.. 146

 4 CMPL's APIs...148

 4.1 Creating Python and Java applications with a local CMPL installation...148

 4.1.1 pyCMPL.. 150

 4.1.2 jCMPL... 152

 4.2 Creating Python and Java applications using CMPLServer...156

 4.2.1 pyCMPL.. 157

 4.2.2 jCMPL... 158

 4.3 pyCMPL reference manual...159

 4.3.1 CmplSets.. 159

 4.3.2 CmplParameters..161

 4.3.3 Cmpl..164

 4.3.3.1 Establishing models.. 164

 4.3.3.2 Manipulating models..165

 4.3.3.3 Solving models.. 166

 4.3.3.4 Reading solutions... 171

 4.3.3.5 Reading CMPL messages.. 176

 4.3.4 CmplExceptions...177

 4.4 jCMPL reference manual..178

 4.4.1 CmplSets.. 178

 4.4.2 CmplParameters..180

 4.4.3 Cmpl..183

 4.4.3.1 Establishing models.. 183

 4.4.3.2 Manipulating models..185

 4.4.3.3 Solving models.. 186

 4.4.3.4 Reading solutions... 190

 4.4.3.5 Reading CMPL messages.. 196

 4.4.4 CmplExceptions...197

 4.5 Examples...197

 4.5.1 The diet problem...197

 4.5.1.1 Problem description and CMPL model..197

 4.5.1.2 pyCMPL... 197

 4.5.1.3 jCmpl..199

 4.5.2 Transportation problem...200

CMPL 2.1.0 - Manual 4

 4.5.2.1 Problem description and CMPL model..200

 4.5.2.2 pyCMPL... 201

 4.5.2.3 jCMPL...203

 4.5.3 The shortest path problem...205

 4.5.3.1 Problem description and CMPL model..205

 4.5.3.2 pyCMPL... 207

 4.5.3.3 jCMPL...208

 4.5.4 Solving randomized shortest path problems in parallel..209

 4.5.4.1 Problem description...209

 4.5.4.2 pyCMPL... 209

 4.5.4.3 jCMPL...212

 4.5.5 Column generation for a cutting stock problem..214

 4.5.5.1 Problem description and CMPL model..214

 4.5.5.2 pyCMPL... 215

 4.5.5.3 jCMPL...219

 5 Authors and Contact...225

CMPL 2.1.0 - Manual 5

 1 About CMPL

CMPL (<Coliop|Coin> Mathematical Programming Language) is a mathematical programming language and

a system for mathematical programming and optimisation of linear optimisation problems.

The CMPL syntax is similar in formulation to the original mathematical model but also includes syntactic ele-

ments from modern programming languages. CMPL is intended to combine the clarity of mathematical mod-

els with the flexibility of programming languages.

CMPL executes HiGHS, SCIP, CBC, GLPK, Gurobi or CPLEX directly to solve the generated model instance.

The CMPL package contains HiGHS as a standard solver as well as SCIP. Because it is also possible to trans -

form the mathematical problem into MPS or Free-MPS, alternative solvers can be used.

CMPL is an open-source project licensed under GPL. It is written in C++ and is available for most of the rel -

evant operating systems (Windows, OS X and Linux).

The CMPL distribution contains Coliop which is CMPL’s IDE (Integrated Development Environment). Coliop

is an open-source project licensed under GPL. It is written in C++ and is as an integral part of the CMPL dis-

tribution.

The CMPL package also contains pyCMPL, jCMPL and CMPLServer.

pyCMPL is the CMPL application programming interface (API) for Python and an interactive shell and

jCMPL is CMPL's Java API. The main idea of this APIs is to define sets and parameters within the user ap-

plication, to start and control the solving process and to read the solution(s) into the application if the prob-

lem is feasible. All variables, objective functions and constraints are defined in CMPL. These functionalities

can be used with a local CMPL installation or a CMPLServer.

CMPLServer is an XML-RPC-based web service for distributed and grid optimisation that can be used with

CMPL, pyCMPL and jCMPL. It is reasonable to solve large models remotely on the CMPLServer that is in-

stalled on a high performance system. CMPL provides four XML-based file formats for the communication

between a CMPLServer and its clients. (CmplInstance, CmplSolutions, CmplMessages, CmplInfo).

pyCMPL, jCMPL and CMPLServer are licensed under LGPLv3.

CMPL, Coliop, pyCMPL, jCMPL and CMPLServer are COIN-OR projects initiated by the Technical University of

Applied Sciences Wildau.

CMPL 2.1.0 - Manual 6

 2 CMPL Language reference manual

 2.1 CMPL elements

 2.1.1 General structure of a CMPL model

The structure of a CMPL model follows the standard model of linear programming (LP), which is defined by a

linear objective function and linear constraints.

cT ⋅ x →max!

s . t .

A ⋅ x≤ b

x≥ 0

In such a model, four different types of objects can be distinguished:

variables

var
Decision variables (columns within the linear programming model)

objectives

obj
Objective functions (neutral rows within the linear programming model)

constraints

con
Constraints (restricted rows within the linear programming model)

parameters

par
Given values within the model

A CMPL model consists of definitions of objects of these four types. The model can be divided into sections,

each introduced by the name of the object type, and containing the associated definitions. For example, a

simple CMPL model can have the following structure:
par:

 // definition of the parameters

var:

 // definition of the variables

obj:

 // definition of the objective(s)

con:

 // definition of the constraints

A typical LP problem is the production mix problem. The aim is to find an optimal quantity for the products,

depending on given capacities. The objective function is defined by the profit contributions per unit c and

the variable quantity of the products x. The constraints consist of the use of the capacities and the ranges

for the decision variables. The use of the capacities is given by the product of the coefficient matrix A and

the vector of the decision variables x and restricted by the vector of the available capacities b.

CMPL 2.1.0 - Manual 7

The simple example:

1 ⋅ x1+2⋅ x2+3 ⋅ x3→max!

s . t .

5.6 ⋅ x1+7.7 ⋅ x2+10.5 ⋅ x3≤15

9.8 ⋅ x1+4.2 ⋅ x2+11.1 ⋅ x3≤20

0≤ xn ;n∈ {1,2,3 }

can be formulated in CMPL as follows:

par:
 c := (1, 2, 3);
 b := (15, 20);

 A := ((5.6, 7.7, 10.5),
 (9.8, 4.2, 11.1));

var:
 x[defset(c)]: real;

obj:
 profit: c^T * x -> max;

con:
 A * x <= b;
 x >= 0;

 2.1.2 Statements and expressions

A CMPL model consists of statements. Each statement is completed with a semicolon. The essential state-

ment is the definition or assignment. A symbol on the left-hand side is assigned the value of the expression

on the right-hand side. If the symbol on the left-hand side has not yet been defined, it is thereby defined as

well. If the assignment is in a section for an object type, the expression on the right-hand side is converted

into an object of this type.

The both most important operators are:
:= Assignment (assigns the value of the right hand side expression to the CMPL symbol on the left

hand side.)
: Only allowed for the definition of a decision variable (representing a column in the LP problem

matrix), an objective or a constraint (representing a row in the LP problem matrix). The name of

the symbol on the left hand side is used as the name for the column or row in the LP problem

matrix represented by the value on the right hand. The symbol is assigned an object which can

be a decision variable, objective or constraint.

In the example, the following statement defines on the right-hand side a vector with three elements. In ad-

dition, a symbol c is defined to which the vector is assigned.

par:
c := (1, 2, 3);

A vector with two elements is assigned to a newly defined symbol b.

b := (15, 20);

CMPL 2.1.0 - Manual 8

Then a matrix with 2x3 elements is defined on the ride hand side and assigned to the newly defined sym-

bol A.

 A := ((5.6, 7.7, 10.5),
 (9.8, 4.2, 11.1));

In the variables section, a vector x of decision variables with the type real is defined.

var:
 x[defset(c)]: real;

The left-hand side defines a vector of variables with the name x. The function defset(c) ensures that this

vector uses the same indices as the vector c. The expression on the right side is the data type real. Since

the statement is in the var section, this expression is converted into a decision variable with data type real.
Such a decision variable is created and assigned for any element of the vector x. The columns in the LP

problem matrix for these decision variables are labelled x[1], x[2] and x[3].

In the following, the objective function with the name profit is defined.

obj:
 profit: c^T * x -> max;

The right-hand side (after the colon) is a formula expression, created from symbols defined before and the

objective sense max. Because the statement stands in the obj section, this expression is converted into an

objective function of the LP problem and assigned to symbol profit. Moreover, the row of this objective

function in the LP problem matrix is also labelled profit.

The constraints are defined in the constraints section.
con:
 A * x <= b;
 x >= 0;

These statements consist of right-hand sides only. According to the constraint section, the formula expres-

sion is converted into a constraint of the LP problem. Since there is no left-hand side, no symbol or row

name is defined. Therefore, the rows are given a default name.

The usual operators can be used in expressions. If the operands are vectors or matrices, a matrix operation

is performed. Important operators are:

Arithmetical:
+ Sign or addition, also string concatenation
- Sign or subtraction
* Multiplication, If number is multiplied by a symbol, the multiplication operator can be omitted.

(e.g 2x is identical to 2*x.
/ Division
^ To the power of

Transpose:

^T Transpose vector or matrix (mainly used in matrix multiplication)

Comparison:
= Equal to
>= Greater than or equal
<= Less than or equal to
<> Unequal

CMPL 2.1.0 - Manual 9

> Greater than
< Less than

Construction operators:
(…) • Array construction from elements (comma separated) or

• Function call with the constructed array as parameter or

• Arithmetical bracketing in expressions
[…] • Tuple construction from elements or

• Indexing operation using the constructed tuple as index or

• Parameter for construction of a restricted type
.. • Interval construction between lower and upper bound

• If used in a context where a set is expected, then the interval is converted to a set.

In addition, a CMPL model can contain comments at any point:
//

#
Comment up to end of line

/* … */ Comment between /* and */

 2.1.3 Data types and arrays

 2.1.3.1 Data types

Objects in CMPL have a data type in addition to the object type. There are simple data types (consisting of

exactly one element) and composite data types (consisting of several objects, each of which has its own

data type).

Almost all data types are only permitted for parameter objects. Some data types can be used for variables.

Objective functions and constraints implicitly always have the data type real. In most cases, the data type

only has to be explicitly specified for variables, for parameters it results automatically from the type of the

assigned expression.

Simple data types usable also for variables:
real • floating point number (uses internally C data type double)

• literal value consists of digits, decimal point and optional exponent
int

integer
• integer number (uses internally C data type long)

• literal value consists only of digits
bin

binary
• integer value which can only be 0 or 1

• also usable as boolean value

• literal values are true (value 1) and false (value 0)

Other important simple data types:

string • character string

• literal value is enclosed in double quotes

CMPL 2.1.0 - Manual 10

Composite data types:
interval • Interval between two numeric values

• If the lower or the upper bound is omitted, then the interval is unbounded on this

side.

tuple • Tuple of an arbitrary number of elements (also no element) with any data type.

• A special kind of tuple is an index tuple, which consists only of elements of the data

types int and string.
set • Set of an arbitrary number of elements (also no element), all elements must be in-

dex tuples.
formula • An expression of parameters and decision variables

• Note that a formula is not a constraint, but an appropriate formula can be converted

into a constraint.
container • A value that contains other symbols (similar to struct or class in C)

As far as is reasonably possible, expressions of one data type can be converted into another data type. Such

a data type cast has the form of a function call, where the data type name is used as the function name.

Some types can be further restricted by type parameters. Such type parameters are specified in the form of

a tuple after the type name. The most important use is to restrict the range of validity for a decision vari -

able.

Examples (within a var: section):

x: real; Defines x as a real decision variable with default range (x ≥0).
x: real[0..100]; Defines x as a real decision variable 0≤ x ≤100.
x: real[..]; Defines x as a real decision variable with no ranges.
y: integer[1..]; Defines y as an integer decision variable y ≥1.
z: binary; Defines z as an integer decision variable z∈ {0,1}.

 2.1.3.2 Sets

A set is a collection of indices. Every element within a set is an n-tuple (pair of n entries) of integers or

strings, where n is named the rank of the tuple. A tuple is constructed by the […] operator, or for 1-

tuples also contextually converted from a single integer or string.

Usage:
[entry-1 [, entry-2, … , entry-n]] Construction of an n-tuple.

The resulting tuple is an index tuple, if all entries

are int or string.

There are two special tuples:
[null] 0-tuple. This special index tuple is the only tuple with rank 0.

It can be element within a set as other index tuples.
[] Empty tuple. Note that this is not the 0-tuple, it is not even an index tuple.

Because it’s not an index tuple it cannot be element within a set. But it can be

converted to a set, and means then the full set (infinite set which contains every

possible index tuple.)

CMPL 2.1.0 - Manual 11

In addition to the elements they contain, sets in CMPL are also characterised by the order of these elements.

This order is relevant in iterations when the keyword ordered is used. The order of the elements is de-

termined during the construction of a set.

Set construction:
set(tuple1, tuple2, …) Constructs a set from the given index tuples. Instead of index

tuples also int or string values are allowed, which will be con-

verted to 1-tuples. The order of the elements is determined

during the construction of a set.

e.g.:
set("a", "b", "c")

set(1, [1,2], [1,"a"])
set(interval) Constructs a set of the 1-tuples of all integer values within the

interval. If the interval has no lower or no upper bound, the

resulting set will be infinite. The elements are ordered from the

lowest to the highest value.

e.g.:
set(1..10)

set(0..)
set() Empty set (without any element)
start(increment)end Constructs a set of 1-tuples of integers which starts with

start, is incremented or decremented in each step by incre-

ment and ends with value end. The values start, incre-

ment and end must be integers. For the increment the value

0 is not allowed, but it can be negative. If increment is posit-

ive, the elements are ordered from the lowest to the highest. If

increment is negative, the elements are ordered from the

highest to the lowest.

e.g.:

1(1)10 is equal to set(1..10)

10(-3)0 is equal to set(10, 7, 4, 1)
*tuple Constructs a set with only one element. Instead of an index

tuple, an int or string value is also allowed, which is conver-

ted into a 1-tuple.
interval If an interval value is used where a set is expected, then the in-

terval will contextually converted to a set.
[] Empty tuple. If it is used where a set is expected, it means the

full set. This is the infinite set containing all possible index

tuples.
[…] If the tuple contains at least one element that is an interval or a

set, and if it is used where a set is expected, then the tuple is

converted to a set. If the tuple contains elements not suitable

for this conversion, an error is generated. e.g.:
[1..2, 1..2]

[set("a","b","c"), 1]

CMPL 2.1.0 - Manual 12

Infinite sets are important for indexing arrays and for matching operations. They are usually composed with

[...]. Important infinite components are:

* All index tuples of rank 1.

e.g.:

[*] set of all index tuples of rank 1

[*,*] set of all index tuples of rank 2

[1,*] set of all index tuples of rank 2 which have 1 as first part
/ Also all index tuples of rank 1, but marks the part to be discarded in the match

operation.

e.g.:

[*,/] set of all index tuples of rank 2, but return in match operation only

the first part of the matching tuples
.. All 1-tuples that consists of an integer value

e.g.:

[1,..] set of all index tuples of rank 2 which have 1 as first part and any

integer as second part
<empty> All index tuples of all ranks (also rank 0)

e.g.:

[] set of all possible index tuples including the 0-tuple

[*,] set of all index tuples of at least rank 1 (i.e. all possible index tuples

save the 0-tuple)

[,1,] set of all index tuples of all ranks, which have a 1 as part at arbitrary

position (because [] contains the 0-tuple, the 1 can be also at the

first or the last position in the index tuples)

The most important operations and functions for sets are:
t in s Checks whether an index tuple t is element of the set s, result is a binary value.

(Also used for iterating over all index tuples within s.)

e.g.:

3 in 1..10 results true

[1,1] in [1,*] results true

[1,1] in [*] results false
s1 *> s2 Match operation. Builds the intersection between the two sets and then removes

from the tuples of the result set the parts that correspond to parts of s2, but are

not a set or are marked with /.

e.g.:

s1 *> [1,*] Finds all 2-tuples in s1 with the first entry equal to 1 and

returns a set only consisting of the second entries of the

tuples found.

 s1 *> [*1,*] Finds all 2-tuples in s1 with the first entry equal to 1 and

returns this set of tuples. (also the first part is included,

because *1 is a set).

 s1 *> [*,/] Finds all 2-tuples in s1, and returns a set of only consisting

of the first parts of the tuples found.

CMPL 2.1.0 - Manual 13

len(s) Returns the count of elements within the set s. If s is an infinite set, the res-

ult is the special value inf.
rank(s) Returns the rank of set s. If all tuples within s have the same rank, the result

is this rank. Otherwise the result is an interval from the minimum rank to the

maximum rank of the tuples.

The result for the empty set is 1.

 2.1.3.3 Arrays

All data in CMPL is organised as an array. Indices of an array are index tuples. The set of all index tuples

that are indices in a given array represent the definition set of the array.

Scalar values can be considered as an array with one element whose index is the 0-tuple.

An array is constructed by (...). If a separating comma is contained within, the corresponding defini-

tion set is set(1..n), where n is the number of specified elements. A comma can also be placed after the

last element. If there is no comma, the created array does have a 0-tuple set as the definition set. In this

case, the brackets therefore act like simple arithmetic brackets.

Examples
(0.5, 1, 2, 3.3, 5.5) Array of 5 numbers.

Definition set is: set(1..5)
(3) Array with only one element.

Definition set is: set([null])
(3,) Also array with only one element.

Definition set is: set(1)
(4,,7) Array of two numbers.

Definition set is: set(1,3)
() Empty array (with no element).

Definition set is: set()
null Also an empty array

In addition to numbers, elements in an array can also be data objects of any type, i.e. tuples, sets, decision

variables or constraints. It is also possible to mix data objects of different types within an array.

Arrays themselves, however, cannot be elements in another array. Instead, in a nested array construction,

the arrays are combined into an entire array with the corresponding definition set.

Examples
((1, 2), (3, 4)) Array of four numbers.

Definition set is: set([1,1], [1,2], [2,1], [2,2])

which is equivalent to: set([1..2, 1..2])
((3)) Array with only one element.

Definition set is: set([null, null])which is equivalent to:
set([null])

(1, (2, (3, 4))) Array of 4 numbers.

Definition set is: set([1], [2,1], [2,2,1], [2,2,2])

CMPL 2.1.0 - Manual 14

The individual elements of an array and partial arrays can be accessed with indexing. To do this, a tuple

must be specified directly after the name of the array. This tuple must either be an index tuple or the tuple

used for indexing must be convertible into a set.

In the first case, the single element to be retrieved from the array is the one belonging to this index tuple. If

the definition set of the array does not contain the specified index tuple, an error occurs.

In the second case, a partial array is retrieved. To do this, a matching operation is internally performed with

the definition set of the array as the first operand and the set specified as the tuple as the second operand.

The result is an array of the elements of the matching index tuple, with the set resulting from the match op -

eration as the definition set. If the match operation results in the empty set, this is not an error, but the res-

ult is an empty array.

Examples
a := ((11, 12), (13, 14));

b := (21, (22, (23, 24)));

c := 31;

Given example arrays

a[1]

b[1]

c[1]

results an error

results: 21

results an error
a[2,1]

b[2,1]

c[2,1]

results: 13

results: 22

results an error
a[null]

b[null]

c[null]

results an error

results an error

results: 31
a[]

b[]

c[]

results array a itself

results array b itself

results array c itself
a[2,]

b[2,]

c[2,]

results array: (13, 14)

results array: (22, (23, 24)

results empty array
a[2,1..]

b[2,1..]

c[2,1..]

results array: (13, 14)

results: 22 but with definition set: set(1)

results empty array
a[*2,*1]

b[*2,*1]

c[*2,*1]

results: 13 but with definition set: set([2,1])

results: 22 but with definition set: set([2,1])

results empty array

Indexing has a slightly different meaning when it is applied to the left-hand side of an assignment. Then the

indexing determines which elements of the array are assigned values. If an element under the correspond-

ing index tuple does not yet exist in the array, it is added.

Examples
a := (11, 12, 13); No left hand side indexation.

The specified array is assigned, and all previous content of a are

overwritten.

CMPL 2.1.0 - Manual 15

a[] := (11, 12, 13); Indexation with the full set.

The given array is assigned, and inserts or overwrites the elements

with index tuples [1], [2], [3].

All other elements of a remain unchanged.
a[4] := 14; The element with index tuple [4] is inserted or overwritten.

All other elements of a remain unchanged.
p := set("str1","str2");

a[p] := (1, 2);
Assigns a["str1"] := 1 and a["str2"] := 2

a[4] := (14, 15); Error because an attempt is made to assign an array to a single ele-

ment.
a[4..] := (14, 15); Assigns a[4] := 14 and a[5] := 15
A[4, 1..] := (14, 15); Assigns a[4,1] := 14 and a[4,2] := 15

 2.1.3.4 Special values

There are some special values in CMPL:
inf Infinite value of data type real

Can be used in interval construction, e.g. -inf..inf.

Can be used in numeric expressions, e.g. inf + 1 results to inf
invalid Is not a real value, but a marker for a non existing value.

Can be used in assignment and in array construction.

e.g. (1,invalid,2) is an array with 3 elements and definition set

set(1, 2, 3), in which the second element has not a value yet.

A value can be checked with the function valid for validity.
null Empty array whichhas special semantics in certain contexts:

• Array construction:

Marks a non existing element.

Note that this is different from an existing element with no

value (marked with invalid)

e.g. (1,null,2) is an array with 2 elements and definition

set set(1, 3).

• Tuple construction:

Converted into a 0-tuple. So [1,null,2] is equivalent to

[1,2].

• Arithmetic addition:

Converted into value 0. So null+2 results to 2.

(also invalid+2 results to 2.)

• Arithmetic multiplication:

Converted into value 1. So null*2 results to 2.

(also invalid*2 results to 2.)

• String concatenation:

Converted to empty string. So null+"abc" results to "abc"

(also invalid+"abc" results to "abc".)

CMPL 2.1.0 - Manual 16

<empty> An omitted value has special semantics in certain contexts:

• Array construction:

Marks a non existing element (equivalent to null).

• Tuple construction:

Converted to the full set of all possible index tuples of all ranks.

• Interval construction:

Converted to the infinite value (equivalent to -inf (on the

left side of operator ..) or to inf (on the right side of ..)

 2.1.3.5 Functions and operations for arrays

Important functions and operators for arrays are:
defset(a) Returns the definition set of array a
validset(a) Returns the set of all index tuples of array a, for which a value exists in the array

(i.e. for which the value is not invalid)

If the array contains only valid values, then validset results the same as def-

set.
t of a Checks whether an index tuple t is an indexing tuple with a valid value in the ar-

ray a

Equivalent to:
t in validset(a)

Like in also of can be used for iterations.

Arrays can be used as operands in operations:
+

-
• One operand is a non-empty array, the other a scalar value:

Performs the operation for every element of the array and the scalar value, the

result is an array with the same definition set as the operand array.

e.g.: (1, 2, 3) + 1 results in (2, 3, 4)

• Both operands are arrays:

The definition set of both arrays must be equal, otherwise it is an error. It per-

forms the operation for every pair of elements of the operand arrays with the

same indexing tuple.

e.g.: (1, 2) + (3, 4) results in (4, 6)
* • One operand is a non-empty array, the other a scalar value:

Performs the operation for every element of the array and the scalar value.

The result is an array with the same definition set as the operand array.

e.g.: (1, 2, 3) * 2 results in (2, 4, 6)

• First operand is a transposed array of rank 1, second operand is a non-trans-

posed array of rank 1:

The definition set of both arrays must be equal, otherwise it is an error. Per-

forms matrix multiplication of a row vector with a column vector.

e.g.: (1, 2)^T * (3, 4) results in 11

CMPL 2.1.0 - Manual 17

• First operand is a non-transposed array of rank 1, second operand is a trans-

posed array of rank 1:

Performs matrix multiplication of a column vector with a row vector.

e.g.: (1, 2) * (3, 4)^T results in ((3, 4), (6, 8))

• First operand is a rectangular array of rank 2, second operand is a non-trans-

posed array of rank 1:

The definition set of the second operand must match the second part of the

definition set of the first operand, otherwise it is an error.

Performs a multiplication of a matrix with a column vector.

e.g.: ((1, 2), (3, 4)) * (5, 6) results in (17, 39)

• First operand is a transposed array of rank 1, second operand is a rectangular ar-

ray of rank 2:

The definition set of the first operand must match the first part of the definition

set of the second operand, otherwise it is an error.

Performs multiplication of a row vector with a matrix.

e.g.: (1, 2)^T * ((3, 4), (5, 6)) results in (13, 16)

• Both operands are rectangular arrays of rank 2:

The second part of the definition set of the first operand must match the first

part of the definition set of the second operand, otherwise it is an error.

Performs multiplication of a matrix with another matrix.

e.g.: ((1, 2), (3, 4)) * ((5, 6), (7, 8))

results in ((19, 22), (43, 50))
=

>=

<=

<>

>

<

• One operand is an array, the other a scalar value:

Performs the operation for every element of the array and the scalar value. The

result is an array with the same definition set as the operand array.

e.g.: (1, 2, 3) >= 2 results in (false, true, true)

e.g.: if x is defined as var x[3]; then x >= 0;

 is equivalent to x[1] >= 0; x[2] >= 0; x[3] >= 0;

• Both operands are arrays:

The definition set of both arrays must be equal, otherwise an error occurs. Per-

forms the operation for every pair of elements of the operand arrays with the

same indexing tuple.

e.g.: (1, 2, 3) = (1, 2, 3) results in (true, true, true)

e.g.: if x is defined as var x[3]; then x >= (4, 5, 6);

 is equivalent to x[1] >= 4; x[2] >= 5; x[3] >= 6;
==

!=
Both operands can be arbitrary values or arrays. The full operands are checked for

equality (or non-equality). The result is either true or false.

e.g.: (1, 2, 3) == (1, 2, 3) results to true

e.g.: if x is defined as var x[3]; then x == 0

 results in false (an array of decision variables is not the same as a numeric 0)

CMPL 2.1.0 - Manual 18

 2.1.4 Object definitions

 2.1.4.1 Assignment attributes

A CMPL model essentially consists of definitions of data objects in the form of assignments. The semantics of

such an assignment is controlled by attributes. These attributes can precede the assignment in any order.

Important attributes are:
object types The value of the right-hand side of an assignment is converted to

the specific object type.

e.g.:
var x: real;

Calls the convert function to var with the data type real as para-

meter, meaning the construction of a new decision variable of the

data type real, and assigns it to the symbol x.
data types The value of the right-hand side of the assignment is converted to

the given data type.

e.g.:
set s := (1, 2, 3);

is equivalent to:
s := set(1, 2, 3);

Note that the data type is only used for the conversion of the right-

hand side, but the symbol is not restricted to values of this data

type.
const The assigned symbol is write protected. Any try to reassign occurs

an error.

e.g.:
const i := 42;

Assigns symbol i that cannot be reassigned.
ref Creates a reference to another symbol.

e.g.:
a := 1; ref b := a; a := 2;

Then also b has the value 2.
public

private

local

Specifies the validity scope of the symbol defined in the assignment.

Used primarily within code blocks.

new Even if the assigned symbol already exists, define a new symbol hid-

ing the original one. Used primarily within code blocks, in combina-

tion with private or local validity scope.
ordered Execution one after the other in the order of the affected set or the

definition set of the affected array in a single thread. Currently only

implemented for iterations in a code block.

CMPL 2.1.0 - Manual 19

 2.1.4.2 Sections

A section is an area of the CMPL model in which specified defaults apply to the assignment attributes. A sec-

tion begins with the section header followed by a colon. All subsequent statements belong to the section un-

til another section header starts the next section.

A section header consists of a number of assignment attributes that can be specified in any order. These at-

tributes are then used by default for all assignments within the section. An attribute specified directly in the

individual assignment overrides the section's default.

Examples
const par:

a := (1, 2, 3);
Defines a parameter array of three numbers that cannot be changed

afterwards.
set:

s := (1, 2, 3);
Defines a set of three numbers.

var bin:

x, y, z;
Defines three decision variables with the data type bin.

There are special assignment operators that do not respect the attributes of the section but have special de-

fault attributes. These assignment operators are:
::= Works like an assignment := but the default validity scope is

local instead of public. The attributes from the current section

are not taken into account.
+=

-=

*=

/=

Works like ::= but performs in addition the specific operation.

e.g.
a += b;

is equivalent to
a ::= a + b;

These special assignment operators are particularly useful for parameters used for control, in order to be

able to assign them easily in sections for variables or restrictions.

 2.1.4.3 Special forms of assignments

An assignment can have several left-hand sides. These left-hand sides are specified before the assignment

operator, separated by commas. The assignment is carried out for each left-hand side.

An assignment can have an array on the left side and a scalar value on the right side. In this case, this value

is assigned to each array element on the left side.

An assignment can be made without a right-hand side and assignment operator. A default value is then used

as the right-hand side, which is invalid per default..

But, if an attribute determines the data type or the object type, the default value of the data type or object

type is used. For example, for a numeric type this is 0, for string the empty string, and for set the empty

set.

For the object type var, the standard is a decision variable with the type real[0..]. The assignment re-

spectively definition is done with the assignment operator:. For objective functions and restrictions, how-

CMPL 2.1.0 - Manual 20

ever, an assignment without right-hand side is not possible. If an objective function and restrictions are

defined without a left-hand side, an automatic name is assigned.

 2.1.4.4 Examples for definitions of parameters and variables

Examples for parameters (within a par: section):

k := 10; Parameter k with value 10
k := (0.5, 1, 2, 3.3, 5.5);

k[] := (0.5, 1, 2, 3.3, 5.5);

k[1..] := (0.5, 1, 2, 3.3, 5.5);

k[1..5] := (0.5, 1, 2, 3.3, 5.5);

n:= 1..5;

k[n] := (0.5, 1, 2, 3.3, 5.5);

All the same vector of parameters with five elements

A[]:= (16, 45.4); Definition of a vector with two integer values

a[1]=16 and a[2]=45.4
a[,] := ((5.6, 7.7, 10.5),

 (9.8, 4.2, 11.1));
Dense matrix with two rows and three columns

b[] := (22); Definition of the vector b with only one element.
products := set("bike1", "bike2");

machineHours[products] := (5.4, 10);
Defines a vector for machine hours based on the set
products.

myString := "this is a string"; String parameter
q := 3;

g[1..q] := (1, 2, 3);
Parameter q with value 3

Usage of q for the definition of the parameter g

x := 1(1)2;

y := 1(1)2;

z := 1(1)2;

cube[x,y,z]:= (((1,2),(3,4)) ,

 ((5,6),(7,8)));

Definition of a parameter cube that is based on the

sets x,y and z

a := set([1,1],[1,2],[2,2],[3,2]);

b[a] := (10, 20, 30, 40);
Definition of a sparse matrix b that is based on the 2-

tuple set a.

Examples for decision variables (within a var: section):

x: real; x is a non-negative real decision variable
x; x is also a non-negative real decision variable (because

data type real is the default for decision variables, if

not given in the section)
x: real[..]; x is a real decision variable with no ranges
x: real[0..100]; x is a real decision variable,0≤ x≤ 100
x[1..5]: int[10..20]; vector with 5 elements,10≤ xn ≤20 ;n∈{1,2,... ,5 }
x[1..5,1..5,1..5]: real[0..]; A three-dimensional array of real decision variables with

125 elements identified by indices,

x i , j ,k ≥0 ; i , j , k∈{1,2,... ,5 }

CMPL 2.1.0 - Manual 21

par:

prod := set("bike1", "bike2");

var:

x[prod]: real[0..];

Defines a vector of non-negative real decision variables

based on the set prod

y: bin; x is a binary variable y∈{0,1}
par:

a:=set([1,1],[1,2],[2,2],[3,2]);

var:

x[a]: real[0..];

Defines a sparse matrix of non-negative real decision

variables based on the set a of 2-tupels.

x[1..10], y[1..5]: real; Defines two vectors of real decision variables
x[1]: real;

x[2]: int;
Defines x[1] as real decision variable, but x[2] as in-

teger decision variable.
x[1..2]: (real, int); Defines x[1] as real decision variable, but x[2] as in-

teger decision variable.
const type:

 my_real := real[0..100];

var:

 x[1..10]: my_real;

Defines own data type for real values within the range

0 to 100

Defines decision variables of that type

 2.1.5 User messages

During executing the CMPL code, outputs can be made to the console. These outputs can be used in to log

the processing of CMPL. However, they cannot be used to display the optimisation result, as the optimisation

only runs when the CMPL code has been completely processed and the model instance has been created.

The following functions are available for output:
echo(a) Console output of the argument value. If the argument is an array, the val-

ues are separated by space. The output is finished with a line break.
error(s) Outputs an error message with the argument string and ends the execution

of the CMPL model.

All objects in CMPL have a string representation that is used for output. For decision variables and restric-

tions, this cannot be the corresponding result value from the optimisation, as this is not yet known at the

time the output is executed. Instead, an internal representation of the CMPL object is output.

For parameters, the parameter value is displayed. In order to output numerical values in particular in the de-

sired form, they can be converted into a string by specifying the desired formatting.

format(f,u,…) Creates a formatted string from the values of the arguments u,…, using

the format string f. The format follows the syntax of the C function

sprintf(…).

For each of the specified arguments u,... the format string must contain a formatting specification that

matches the type of the argument value. Such a formatting specification has the following structure (for fur -

ther details see C documentation):

CMPL 2.1.0 - Manual 22

%<flags><width><.precision>specifier

specifier
d Data type int
f Data type real
s Data type string

If the type of the corresponding argument does not match the type of the specifier, then the argument
is converted to the matching type.

flags
- Left-justify
+ Forces the result to be preceded by a plus or minus sign (+ or -) even for positive numbers.

By default only negative numbers are preceded with a - sign.
width
number Minimum number of characters to be printed. If the value to be printed is shorter than this

number, the result is padded with blank spaces. The value is not truncated even if the result

is larger.
* The width is not specified in the format string, but as an additional integer value argu-

ment preceding the argument that has to be formatted.

.precision

.number For integer specifiers d: precision specifies the minimum number of digits to be written. If

the value to be written is shorter than this number, the result is padded with leading zeros.

The value is not truncated even if the result is longer. A precision of 0 means that no charac-

ter is written for the value 0.

For f: this is the number of digits to be printed after the decimal point.

For s: this is the maximum number of characters to be printed. By default all characters are

printed until the ending null character is encountered.

When no precision is specified, the default is 1. If the period is specified without an explicit

value for precision, 0 is assumed.
.* The precision is not specified in the format string, but as an additional integer value argu-

ment preceding the argument that has to be formatted.

Examples:
a:=66.77777;

echo(format("%10.2f", a)); outputs: 66.78
i:=7; j:=9;

echo(format("%d of %d", i, j)); outputs: 7 of 9

CMPL 2.1.0 - Manual 23

 2.1.6 Code blocks

 2.1.6.1 Overview

A code block is a part of the CMPL code enclosed in curly brackets. The structure in the simplest case is:

{ header: body }

The code block body consists of any other CMPL code, which can be statements or an expression. A code

block header is formally always a Boolean expression. In addition to a normal Boolean expression, the defini -

tion of code block symbols can be used. In this case, the expression is considered satisfied if there is at least

one valid assignment of values to the code block symbols. If there are several valid assignments, then the

execution is carried out for each of these assignments, so that the code block acts as a loop.

Instead of a single header, there can also be any number of headers separated by commas:

{ header1, header2, …: body }

As far as the headers act as conditions, they must all be satisfied. As far as they represent a loop, they act

as a nested loop.

The header can also be empty, in which case it acts as a condition that is always satisfied.

{: body }

A code block can be separated into several parts using |.

{ header1: body1 | header2: body2 | … }

In this case, the first body for which its headers are satisfied is executed. All subsequent parts are not evalu-

ated.

A code block can be executed immediately. Or it defines an object of the data type function that can be

assigned and called later. For this purpose, a & must be placed directly in front of the code block. In this

case, the code block receives an array as a function parameter, accessible as $arg.

A code block always returns an array as a result. This result array can be used if the code block represents

an expression. If it is an statement, the result array is usually an empty array and is not used.

Examples:
{ @i in 1..3: a[i] := 2*i; } Assigns the value 2 to a[1], 4 to a[2] and 6 to

a[3].

The code block contains an iteration over

set(1..3) and the assignment is made in the

code block body
a[] := { @i in 1..3: 2*i };

Assigns the value 2 to a[1], 4 to a[2] and 6 to

a[3].

The code block constructs an array (2, 4, 6)

with the definition set(1..3). Afterwards, this

array is assigned to a.

CMPL 2.1.0 - Manual 24

sum{ @i in 1..2, @j in 1..2: x[i,j] } This expression is equivalent to:
x[1,1] + x[1,2] + x[2,1] + x[2,2]

The code block constructs an array (x[1,1],

x[1,2], x[2,1], x[2,2]) and then the func-

tion sum is called with this array as function para-

meter.
sum{ [@i,@j] in [1..2,1..2]: x[i,j] }

sum{ @t in [1..2,1..2]: x[t] }
Both expressions are equivalent to previous ex-

ample.
{ k > 0: a := 100; } Executes the assignment to symbol a only if k>0.

a := { k > 0: 1 | k < 0: -1 |: 0 }; The parameter a is assigned the sign of k.
{ k > 0: a[1] := 1; |: a[2] := 1; } Assignment to either a[1] or a[2] depending on

k.
a[{k > 0: 1 |: 2}] := 1; Equivalent to previous example
my_sum := &{:

 local a := null;

 { @i of $arg: a := a + $arg[i]; }

 return a;

};

Defines a function object equivalent to the built-in

function sum and assigns it to my_sum.

 2.1.6.2 Code block symbols

New symbols can be defined within a code block header. Such symbols get their value in the header and

cannot be changed by any assignment. The symbols have local validity that ends with the end of the associ-

ated code block body.

In general, a header is always to be understood as a Boolean expression. If new symbols are defined in this

expression, they are assigned values so that the Boolean expression is fulfilled. If the new symbol is the left-

hand operand of in or of, then all possible assignments are used, resulting in an execution like in a loop.

E.g. the expression { @i in s.: ... } can be understood as: for all i which are element in

set s.

The @ marking of a code block symbol in its definition is optional. It serves the readability of the CMPL code,

and the prevention of errors by not taking into account that a symbol may already be defined in an external

context.

If i is not defined in the outer context, then

{ @i in s: … }

and

{ i in s: … }

are identical. In both cases i is defined as a code block symbol and the code block body is executed for

each element in s.

CMPL 2.1.0 - Manual 25

If i is already defined externally, then with

i := 1; { @i in s: … }

this iteration is executed as above. Inside the code block, the outer i is hidden by the code block symbol i.

However, with

i := 1; { i in s: … }

no code block symbol is defined, but it is checked whether the value of the outer i is element of s, and if

so, the code block body is executed once.

Although a code block header always formally represents a boolean expression, a code block symbol to be

defined may not be placed anywhere in it. The following uses are permitted:

• as the left side of a comparison with = or ==

(because of the semantic similarity with an assignment, the assignment operator := may then also

be used instead of the comparison operator)

• as the left-hand side of the operators in and of

• within a tuple construction expression that stands in place of the simple code block symbol

Examples of code block headers

@i = 1 Executes the code block body once, with i con-

taining the value 1
@i = (1, 2, 3) Executes the code block body once, with i con-

taining the array (1, 2, 3)
@i = set(1, 2, 3) Executes the code block body once, with i con-

taining the set set(1, 2, 3)
@i = set() Executes the code block body once, with i con-

taining the empty set
@i in set(1, 2, 3) Executes the code block body three times, with i

first 1, then 2, then 3
@i in set([1,1],[2,1],[3,2]) Executes the code block body three times, with i

first the tuple [1,1], then [2,1], then [3,2]
@i in set() The code block body is not executed. (if a next al-

ternative code block part exists, then execution

goes to it)
[@i, 1] = [2, 1] Executes the code block body once, with i con-

taining the value 2
[@i, 1] = [1, 2, 1] Executes the code block body once, with i con-

taining the tuple [1,2]
[@i, 1] = 1 Executes the code block body once, with i con-

taining the null tuple [null]
[@i, 1] = [1, 2] The code block body is not executed. (if a next al-

ternative code block part exists, then execution

goes to it)

CMPL 2.1.0 - Manual 26

[@i, 1] in set([1,1],[2,1],[3,2]) Executes the code block body two times, with i

first 1, then 2
[@i, @j] = [1, 2, 1] Executes the code block body once, with i con-

taining 1 and j containing the tuple [2,1]

(Other assignments for i and j would be possible.

CMPL selects the assignment in such a way that

rank-1 tuples are assigned from the front as far

as possible.)
[@i, 3, @j] = [1, 2, 3, 4] Executes the code block body once, with i con-

taining the tuple [1,2] and j containing 4
[@i, @j] in set([1,1],[2,1],[3]) Executes the code block body three times, first with

i=1 and j=1, then i=2 and j=1, then i=3 and
j=[null]

In addition, a code block header may also consist of a stand-alone code block symbol. Such a code block

symbol is not given a value and may not be used in expressions within the code block. It can only be used

as a reference for break, continue or repeat.

 2.1.6.3 Control commands in code blocks

Within a code block, special control commands can be used to set the result value of the code block and to

control iterations.

Syntactically, these commands are assignments with special attributes, whereby the left-hand or right-hand

side of the assignment can be missing. Generally, the left-hand side of the assignment references the code

block, idendified by the first code block symbol defined there. If the left-hand side is missing, the innermost

code block is affected. The right-hand side of the assignment represents the result value of the code block.

If the right-hand side is missing, null is used as the value.

break The execution of the body of the referenced code block is cancelled. Remaining state-

ments are skipped.

If the referenced code block contains iteration, the execution of the remaining iteration

steps are skipped.

E.g.: { @i of a: { a[i] = v: break i := i; } }

searches for the value v in the array a and returns the index of the first element found

as result, or null if not found.

The i on the left side of the break statement is necessary because the innermost code

block is the comparison, but the over all i has to be cancelled and must therefore be

named here. The i on the right side is the index of the found element as the result

value of the code block.
continue The execution of the body of the referenced code block is cancelled. Remaining state-

ments are skipped.

If the referenced code block contains iterations, remaining iteration steps are ex-

ecuted.

CMPL 2.1.0 - Manual 27

If the referenced code block contains no iteration continue is equivalent to break.

e.g.: { @i of a: { a[i] = v: continue i[i] := 1; } }

searches for the value v in the array a and creates an array as code block result, which

contains only the indices of the values found. The first i in the continue statement

references the code block, for which the result is set. The second i is used as normal

indexation value within the code block result array.

repeat The execution of the body of the referenced code block is cancelled. Remaining state-

ments are skipped.

Execution starts again with the referenced code block, but the code block result is not

reinitialised. The code block headers are evaluated again. If the header conditions are

not longer fulfilled, the code block body is not executed again.

e.g.: i ::= 0; p := { @r, a[++i] <> v: repeat r[i] := a[i]; };

searches for the value v in array a and returns the part of array a before the value

found as a code block result, which is then assigned to p.

Note that one cannot define i as code block symbol here, because a code block sym-

bol cannot be be assigned or incremented.

It should also be noted that the code block must define a code block symbol (@r) to

assign a code block result.

return Only allowed inside a code block used as a function definition. This command works

like break, but refers to the innermost function definition instead of the innermost

code block. Explicit referencing to a code block by specifying a left side of the assign-

ment is not allowed.

e.g.: f := &{ a = $arg[1,], v = $arg[2]: { @i of a: { a[i] = v:
return i; } } };

Defines a function f with two arguments. The first argument is an array, in which the

value given as second argument is searched. The function value is the index of the first

found element in the array, or null if not found.

 2.1.6.4 Validity scope of symbols

Local and private symbols can be defined within a code block body. Such symbols can only be accessed

within the code block body.

Unlike local symbols, private symbols nevertheless have a global lifetime. This means that when the code

block body is executed again, the previous value of the symbol is accessible again. This can be used in par -

ticular to encapsulate functionality and data in the sense of object-oriented programming.

Within a directly executed code block, all symbols that are directly accessible outside the code block are also

accessible inside the code block.

CMPL 2.1.0 - Manual 28

This applies regardless of whether the symbols are public, local or private, or whether they are code block

symbols of an external code block. Within a directly executed code block, new public symbols can also be

defined, which are then accessible even after the end of the code block.

In a code block used as a function, however, no external symbols are accessible at all. The only exceptions

are predefined symbols, such as the data types. No new public symbols can be defined within such a code

block. These restrictions apply in order to design CMPL functions as pure functions, which receive all input

data via the function arguments and return all result data as function values.

Public symbols can be made accessible by writing the code block in the function definition with &+{ ... }

instead of &{ ... }. Then all public symbols are accessible in the code block and new ones can be defined

in it.

 2.1.6.5 Validity scope of sections

An outer section continues to apply within a code block. A section started within a code block body is only

valid until the end of the code block, after which the section valid before the code block becomes active

again. Especially with {:: ... }, the defaults of the valid section can be temporarily discarded. Note the

two colons, the first ends the empty code block header, the second starts a section without defaults within

the code block body.

 2.1.6.6 Code block as statement or expression

A directly executed code block can be used as an instruction or as an expression. Likewise, a code block

body can consist of instructions or represent an expression. The following four cases can be distinguished:

code block body contains statements

code block is used as statement

The statements within the code block body are executed.

The result value of the code block is discarded (usually the code

block has no explicit result value, which means the result value is

null).

Note that the code block itself does not need a semicolon as an

end of statement, but the statements within the code block body

do.

e.g.: { @i in 1..3: a[i] := 2*i; }
code block body contains statements

code block is used as expression

The statements within the code block body are executed. Usually,

one sets a result value of the code block within these instructions

with break, continue or repeat.

e.g.: a[] := { @i in 1..3: continue 2*i; };

Note the semicolon at the end of this example. It is necessary

here because the statement it ends is the assignment, not the

code block itself.
code block body is expression

code block is used as expression

The expression of the code block body constructs the result of the

code block.

e.g.: a[] := { @i in 1..3: 2*i };

Note that within the code block body there is no semicolon, be-

cause the code block body is not a statement.

CMPL 2.1.0 - Manual 29

code block body is expression

code block is used as statement

This case is not allowed. It would also make no sense because

the code block as an statement would discard the value construc-

ted by the expression within the code block body

A code block used as a function definition always represents an expression of the data type function. The

code block body in it can be a statement or an expression:

code block used for function definition

code block body contains statements

When the function is called, the statements within the code

block body are executed. The code block body can construct a

return value by using return (or break, continue or re-

peat). Otherwise the return value of the function is null.

e.g.: f := &{: return 2*$arg; };

code block used for function definition

code block body is expression

When the function is called, the expression is evaluated and

forms the return value of the function.

e.g.: f := &{: 2*$arg };

If a code block consists of several parts, then code block bodies consisting of statements and expressions

may be combined with each other as desired.

 2.1.6.7 Using a formula as a code block header

A code block header can also consist of a boolean formula, which means it can contain conditions over de-

cision variables. Therefore it is possible to make values or constraints depending of the values of decision

variables or the fulfillment of other constraints. Such a construct is not directly allowed in a linear optimisa-

tion model, but is suitably transformed using automatically added binary variables.

Examples:
var: x, y: real;

con: y <= { x > 0: 10 |: 20 };
If x is greater than 0, then y must not be greater than

10, but if x is 0, then y must only be lesser or equal 20.
var: x: real;

obj: x + { x > 0: 10 } -> min;
If x is greater than 0, then there are additional fix costs

of 10.
var: x, y: real;

con:

 { x > 0 && y > 0: x + y <= 1; }

If both variables x and y are greater than 0, then the

sum of them must not be greater than 1.

You can also set parameter values depending on the value of decision variables:
var: b: bin;

par: a := { b: 2 |: 1 };
If the binary variable b has value 1, then the parameter

a get the value 2, otherwise the value 1.
var: b: bin;

par: { b: a := 2; |: a := 1; }
Same as in the previous example.

var: b: bin;

par:

 a := 1;

 { b: a += 1; }

Same as in the previous example.

Note that in the previous examples the parameter a is not of the data type integer, because its integer

value is depending on the decision variable and not known in cmpl. Instead of the parameter a get a value

of data type formula.

CMPL 2.1.0 - Manual 30

Such a value of data type formula can be used in arithmetic operations and in constraints. But it cannot be

used for sets or iterations, so in the example “s := 1..a;” or “{ @i in 1..a: … }” would be erro-

neous.

In some cases one may use a symbol not for a parameter of the optimization problem, but for control within

cmpl. For that you can make an assignment independent from the conditions over decision variables, with

the assignment attribute nocond:

var: b: bin;

par:

 a1 := 1;

 a2 := 1;

 { b:

 a1 += 1;

 nocond a2 += 1;

 }

a1 gets data type formula and its value is dependent

from the decision variable b.

But a2 is simply an integer and gets the value 2.

var: b: bin;

par:

 a1 := 1;

 a2 := 1;

 { b:

 a1 += 1;

 a2++;

 }

Same as in the previous example, because the incre-

ment operator ++ and the decrement operator -- are

executed with nocond by default.

 2.1.6.8 Specific control structures

As already described, code blocks can be used to emulate the various control structures known

from other programming languages. The most important control structures are described below.

For loop

A for loop is defined by code block with at least one iteration header. The code block body contains user-

defined instructions which are repeatedly carried out. The number of repeats is based on the iteration

header definition.

Examples:

{ @i in 1(1)3 : ... } Loop counter i with a start value of 1, an increment of

1 and an end condition of 3

{ @i in 1..3 : ... } Alternative definition of a loop counter; loop counter i

with a start value of 1 and an end condition of 3. (The

increment is automatically defined as 1)
products:= set("p1", "p2", "p3");

hours[products]:=(20,55,10);

{@i in products:

 echo ("hours of product " +
For loop using the set products returning

user messages hours of product: p1 : 20

CMPL 2.1.0 - Manual 31

i + " : "+ hours[i]);

}

hours of product: p2 : 55

hours of product: p3 : 10
{@i in 1(1)2:

 {@j in 2(2)4:

 A[i,j] := i + j;

 }

}

Defines A[1,2] = 3, A[1,4] = 5, A[2,2] = 4 and
A[2,4] = 6

a := set([1,1],[1,2],[2,2],[3,2]);

b[a] := (10, 20, 30 , 40);

{ @k in a: echo (k + ":"+ b[k]); }

k is iterated over the 2-tuple set a

The following user messages are displayed:
[1, 1]:10

[1, 2]:20

[2, 2]:30

[3, 2]:40

Several loop heads can be combined. The above example can thus be abbreviated to:
{@i in 1(1)2, @j in 2(2)4:

A[i,j] := i + j;

}

Defines A[1,2] = 3, A[1,4] = 5, A[2,2] = 4

and A[2,4] = 6

{@i in 1(1)5, @j in 1(1)i:

A[i,j] := i + j;

}

Definition of a triangular matrix

If-then clause

An if-then consists of one condition as code block header and user-defined expressions which are executed if

the if condition or conditions are fulfilled. Using an alternative non-conditioned body the if-then clause can

be extended to an if-then-else clause.

Examples:
{@i in 1..5, @j in 1..5:

{i = j: A[i,j] := 1; }

{i != j: A[i,j] := 0; }

}

Definition of the identity matrix with combined loops

and two if-then clauses

{@i in 1..5, @j in 1..5:

{i = j: A[i,j] := 1;

 |: A[i,j] := 0; }

}

Same example, but with one if-then-else clause

i:=10;

{ i<10: echo ("i less than 10");

 |: echo ("i greater than 9");

}

Example of an if-then-else clause
It returns user message i greater than 9.

{ i = j: 1 |: 2 } Conditional expression that results the value 1 if i=j,

otherwise the value 2.

Switch clause

Using more than one alternative body the if-then clause can be extended to a switch clause.

CMPL 2.1.0 - Manual 32

Example:
i:=2;

{ i=1: echo ("i equals 1");

 | i=2: echo ("i equals 2");

 | i=3: echo ("i equals 3");

 | : echo ("any other value");

}

Example of a switch clause that
returns user message i equals 2.

While loop

A while loop is defined by a code block with a condition header and using the repeat command within the

code block body. The body contains user-defined instructions which are repeatedly carried out until the con-

dition in the header evaluates to false.

Examples:
i:=2;

{i<=4:

A[i] := i;

i += 1;

repeat;

}

While loop with a global parameter that defines A[2] =

2, A[3] = 3 and A[4] = 4.

{: a ::= 1;

 {a < 5:

 echo (a);

 a += 1;

 repeat;

 }

}

While loop using a local symbol defined in an outer code

block that returns user messages 1

2
3
4.

{: a ::= 1;

 {@x:

 echo (a);

 a += 1;

 {a>=4: break x;}

 repeat;

 }

}

Alternative formulation:

This code block uses a reference code block symbol x. It

is necessary, because it is needed as reference for the

break statement in the inner code block. (Without this

reference the break statement would refer to the condi-

tion a>=4)

Function definition

A code block can define a function. A function always has exactly one argument. Since this argument can be

an array of any number of elements, this is not a restriction. The elements of the argument array can be of

any data type and object type, as can the return value. They can therefore also be decision variables or con-

straints.

CMPL 2.1.0 - Manual 33

Examples:
square := &{

 @i of $arg: $arg[i] * $arg[i]

};

Defines a function that squares each element of the ar-

gument array and returns these results as a result array.

e.g.: square(3, 4, 7) results to (9, 16, 49)

square_sum := &{:

 res ::= 0;

 { @i of $arg:

 res += $arg[i] * $arg[i]; }

 return res;

};

Defines a function that squares each element of the ar-

gument array, sums these results, and returns the sum

as the result.

e.g.: square_sum(3, 4, 7) results to 74

fib := &+{

 $arg <= 2: 1

 |: fib($arg-1) + fib($arg-2)

};

Defines a recursive function that returns the nth number

of the Fibonacci sequence for an argument n. The defini-

tion with &+{ ... } is necessary so that the symbol

fib defined outside the function body can be accessed

inside the function body.

e.g.: fib(8) results in 21
map := &{

 @f = $arg[1], @a = $arg[2,]:

 { @i of a: f(a[i]) }

};

Defines a function that receives another function as its

first argument and applies that other function to the ele-

ments of the array passed as its second argument.

e.g., using the fib function shown above:

map(fib, (3, 4, 7)) results in (2, 3, 13)

e.g., using an anonymous function:

map(&{: 2*$arg}, (3, 4, 7)) results in

(6, 8, 14)
fixcosts := &{

 @v = $arg[1],

 @f = $arg[2],

 @m = $arg[3]:

 { f == 0: return 0; }

 local var b := binary;

 con v <= m * b;

 return f*b;

};

obj:

 sum{ @i of x:

 c[i]*x[i]

 -fixcosts(x[i], fc[i], mx)

 } -> max;

Defines a step-fixed cost function to be used for a de-

cision variable. The first argument is the decision vari-

able, the second is the step-fixed cost and the third is a

large value at least as high as the upper bound of the

decision variable.

An additional binary variable is created in the function,

as well as a constraint that sets this binary variable to 1

if the decision variable has a value greater than 0. The

term representing the step-fixed costs is returned.

This function can be used in an objective function. For

example, in a production planning problem, let x be the

vector containing the decision variables, c be the a vec-

tor of the profit contributions per unit and fc be the vec-

tor containing the associated step-fixed cost. Let also mx

be a number greater than or equal to the largest upper

bound of x.

CMPL 2.1.0 - Manual 34

 2.1.6.9 Multithreading

The option -threads n can be used to determine how many threads CMPL may use. If more than one thread

is allowed, then a maximum of this many threads are used for parallel execution for iterations in a code

block.

If the iteration steps are to be executed sequentially in their order, the ordered attribute must be used in the

definition of the code block symbol for the iteration.

Examples:
{ @i in 1..10: echo(i); } When using multiple threads, the output is in unordered

sequence.
{ ordered @i in 1..10: echo(i); } Regardless of how many threads are allowed, the output

is guaranteed to be in order from 1 to 10.

Caution: Multithreading is an experimental feature. Errors may occur when using it. Therefore, the number

of threads is currently set to 1 by default.

 2.1.7 Names for rows and columns

 2.1.7.1 Name prefix

When defining decision variables or constraints or objective functions, the name and index tuple of the CMPL

symbol are used to name the column or row in the LP problem matrix. If a constraint is not assigned to a

CMPL symbol, it is automatically given a name in the LP problem matrix. This behaviour can be adjusted by

a name prefix.

Usage:
`nameprefix { … } Sets the name prefix effective for the execution

of the code block.
`nameprefix statement; Sets the name prefix effective for the execution

of the statement. Especially useful if the state-

ment is a function call.

If a name prefix is used in the definition of a decision variable or a restriction, then:

• The name for the column or row is composed of the name prefix and the CMPL symbol name. If a

constraint is not assigned to a CMPL symbol, then the name prefix alone forms the name.

• If the index tuple for the name of the column or row is composed of the current values of all sur-

rounding iterations and the index tuple of the CMPL symbol.

Name prefixes can be nested. The effective name prefix is then composed of all specified name prefixes. A

command line option can be used to determine whether a separator string is placed between the parts in

this composition.

CMPL 2.1.0 - Manual 35

Examples:
var:

 x[1..3], y[1..3];

con:

 `aaa { @i in 1..3: x[i] <= y[i]; }

The 3 constraints get the names aaa[1],

aaa[2] and aaa[3]

var:

 x[1..3], y[1..3];

con:

 `aaa {: cc: x <= y; }

The 3 constraints get the names aaacc[1],

aaacc[2] and aaacc[3]

var:

 x[1..2, 3..4], y[1..2, 3..4];

con:

 `aaa { @i in 1..2:

 `bbb { @j in 3..4: x[i,j] <= y[i,j]; };

 }

The 4 constraints get the names

aaabbb[1,3], aaabbb[2,3],

aaabbb[1,4] and aaabbb[2,4]

var:

 `a x[1..2] := int;
Definition of two variables with CMPL symbol

name x[1] and x[2], but column name in

the LP problem matrix is a[1] and a[2].

Note the assignment operator := if you use

: then the column names would be ax[1]

and ax[2]
fct := &{: local var x[1..2]; … };

{ @i in set("a", "b"):

 `f1 fct();

 `f2 fct();

}

Defines a function which uses two decision

variables x[1] and x[2].

The function is called 4 times. Without a

name prefix it would be an error because

the use of the same names for different

columns in the LP problem matrix.

Using a name prefix the columns get the

names f1x[a,1], f1x[a,2],
f2x[a,1], f2x[a,2], f1x[b,1],

f1x[b,2], f2x[b,1], f2x[b,2]

For compatibility with the previous version of CMPL, the name prefix before a code block may also be spe-

cified without an introductory `. However, this is only possible if the name prefix does not correspond to a

defined CMPL symbol, as otherwise the construct would syntactically correspond to a function call.

 2.1.7.2 Explicit control of the name prefix

The currently effective name prefix can be obtained within CMPL with $curDestName. It is also possible to

set or delete the name prefix:
$curDestName Special symbol for reading and setting the currently effective name prefix.

When reading, the effective name prefix is returned as a string, regardless of

whether it was set with `nameprefix or was previously set with $curDest-

Name. If no name prefix was set, null is returned.

CMPL 2.1.0 - Manual 36

When set, the new value remains effective until the end of the innermost code

block body in which the setting is executed or, if necessary, until it is set again

within the code block body. The effectiveness also extends to called functions.

With regard to the index tuple that becomes effective when the name prefix is used for name generation,

there is a difference between setting the name prefix with `nameprefix and setting it via $curDest-

Name. If setting via $curDestName is relevant for the effective nameprefix, then only the current values of

iterations started after setting with $curDestName are included in the index handle.

Other special symbols in this context are:
$curTuple Gets the current tuple of the innermost iteration
$curFullTuple Gets the current tuple of all iterations
$curDestTuple Gets the tuple of all iterations up to the innermost iteration, in which

$curDestName is set. If $curDestName is never set, then equivalent to

$curFullTuple.

This tuple prefixes the index tuple in names for new columns or lines in the LP

problem matrix.

Examples:
var:

 x[1..3], y[1..3];

con:

 { @i in 1..2:

 $curDestName ::= "a" + i;

 x[i] <= y[i];

 }

The 3 constraints get the names a1, a2 and a3

Note the assignment with ::= to $curDestName. This is

necessary, because in an assigment with := within a con

section it would be tried to convert the right hand side of the

assignment to a constraint.

var:

 x[1..3], y[1..3];

con:

 `a { @i in 1..2:

 $curDestName += i;

 x[i] <= y[i];

 }

Also the 3 constraints get the names a1, a2 and a3

echo($curDestName);

{ @i in 1..1:

 $curDestName += "a";

 echo($curDestName);

 { @j in 2..2:

 $curDestName += "b";

 `c { @k in 3..3:

 echo($curDestName);

 echo($curDestTuple);

 echo($curFullTuple);

 }

 }

 echo($curDestName);

}

prints: null

prints: a

prints: abc

prints: [3]

prints: [1,2,3]

prints: a

CMPL 2.1.0 - Manual 37

 2.1.7.3 Explicitly set the name for rows and columns

The name, including the index multiple for rows and columns in the LP problem matrix, can also be set com-

pletely independently of the name in CMPL. The following special symbols can be used for this purpose:

o.$destName Gets or sets the name for the column or line in the LP problem matrix rep-

resented by o, which must be a scalar value of object type var, con or obj.

e.g. if var: x[1..5];

then x[1].$destName results to "x"

and x[1].$destName := "X#";

change its name in the LP problem matrix to X#[1].
o.$destTuple Gets or sets the index tuple for the column or line in the LP problem matrix

represented by o, which must be a scalar value of object type var, con or

obj.

e.g. if var: x[1..5];

then x[1].$destTuple results to [1]

and x[1].$destTuple := ["a", "b"];

change its name in the LP problem matrix to x[a,b].
o.$destNameTuple Gets or sets the name and the index tuple (both together within a tuple) for

the column or line in the LP problem matrix represented by o, which must

be a scalar value of object type var, con or obj.

e.g. if var: x[1..5];

then x[1].$destNameTuple results to ["x", 1]

and x[1].$destNameTuple := "X#1";

change its name in the LP problem matrix to X#1.
o.$destFullName Gets the name and the index tuple (together as a string) for the column or

line in the LP problem matrix represented by o, which must be a scalar

value of object type var, con or obj.

e.g. if var: x[1..5];

then x[1].$destFullName results to "x[1]"

 2.1.8 Extensions of CMPL

 2.1.8.1 Logical constraints

In a linear optimisation model, a constraint consists of an inequality or an equation. In CMPL, however, it is

also possible to specify any logical combination of equations and inequalities as a constraint. Such a con-

struct is then suitably transformed using automatically added binary variables.

CMPL 2.1.0 - Manual 38

Relevant operators and functions:
&& AND operator: Both equations or inequations must be satisfied.
and(…) AND function: All equations or inequations that are given as an argument array

have to be satisfied.
|| OR operator: Only one of the two equations or inequations linked must be ful-

filled.
or(…) OR function: Only one equations or inequations that are given as an argument

array have to be satisfied.
! Negation: the equation or inequality must not be fulfilled.
(…) Bracketing can be used to form arbitrarily complex logical constructs.
<>

<

>

These comparison operations are not possible in a linear optimisation model. But

CMPL allows them by automatically considering them as negations. For example,

CMPL processes x < y as !(x >= y).

In addition to equations and inequations, single binary variables can also be used in logical operations as

Boolean values. If b is defined as a binary variable, then the use of b in place of an equation or inequation

in a logical operation is considered to be the equation b = 1.

Examples:
var: x, y: real;

con: x >= y || x = 0;
If x is greater than 0, then it must also be greater than

or equal to the value of y.
var: x: real;

con: or(x = (1, 2.4, 5.6));
The variable x may only take the values 1, 2.4 or

5.6. To do this, an array of three equations is first

formed, which are then linked with a logical OR.
var: x, y: real; b: bin;

con: (b && x > y) || (!b && x < y);
If the variable b is equal to the value 1, then x must be

greater than y. If, on the other hand, b takes the value

0, then x must be less than y.

 2.1.8.2 Products of decision variables

In CMPL, products of decision variables can be used. These can either be passed directly to the solver if the

solver supports quadratic optimisation QP (Cplex, Gurobi, Scip). Or they are linearised by CMPL if in one of

the operands is binary or integer.

Examples:
var: x: real; b: bin;

con: x*b <= 10;
Product with a binary variable

var: a, b: int[0..5];

con: (a + b)^2 <= 100;
Products of integer variables

prod := &{:

 p ::= 1;

 { i of $arg: p *= $arg[i]; }

 return p;

};

var: a[1..5]: int[0..3];

con: prod(a) <= 100;

Definition of a function that multiplies all elements of its

argument array with each other. This function can be

applied to use the product of the variables of an array in

a restriction.

CMPL 2.1.0 - Manual 39

 2.1.8.3 Container values and class-like constructs

In CMPL, the special data type container is available. Data objects of this type do not directly contain values

themselves, but instead subordinate symbols that can contain any values, arrays, or other containers. The

subordinate symbols are addressed via a point as operator.

Examples:
myfunctions := container();

myfunctions.fct1 := &{ … };

myfunctions.fct2 := &{ … };

myfunctions.fct1(…);

Similar to namespace: Defines a new container object

and assigns it to the symbol myfunctions.

Defines functions in the container.

Calls a function.

container c[1..3];

c[1].a := (1, 2, 3);

c[2].a := (3, 4, 5);

c[3].a := (6, 7, 8);

echo(c[2].a[3]);

Similar to struct in C:

Defines three new container objects and assigns them

to an array c.

Defines a child symbol a in each of the containers and

assigns an array to it.

Accesses the second container, therein the third ele-

ment of the array a and outputs the value 5.

CMPL also offers possibilities for the class-like use of container objects, as known from object-oriented pro-

gramming. The following language elements are available:
class.construct(…); Function for creating a class-like container object. A

constructor-like function is to be given as an argument

to this function, which defines the instance variables

and instance functions of the class. If a second argu-

ment is given, this is passed on as an argument to the

constructor function.
$this Access to the container that contains the instance of the

class. Access to instance variables and instance func-

tions must always take place via it.
as_string If a class defines an instance function with this name, it

is implicitly called when the container is converted to a

string. This is particularly useful to be able to simply

output a suitable textual representation of the class ob-

ject with echo().
as_var If a class defines an instance function with this name, it

is implicitly called when the container is converted to

decision variables.
as_con If a class defines an instance function with this name, it

is implicitly called when the container is converted to a

constraint.

CMPL 2.1.0 - Manual 40

as_obj If a class defines an instance function with this name, it

is implicitly called when the container is converted to an

objective function.

In the following, a class for the Fibonacci sequence is given as an example. The sequence calculated so far

is stored in the class. If an element is queried that has not yet been calculated, the sequence is extended.
// constructing function for the class

fibcl := &{:

 private par:

 // stored values, initialized with first two elements

 $this._fib[1..2] := 1;

 // count of computed elements

 $this._maxind := 2;

 // name for this object, given as constructor argument

 $this._name := $arg;

 // function to compute values up to given element number

 $this.compute := &{ $arg > $this._maxind:

 { i in ($this._maxind+1) .. $arg:

 $this._fib[i] := $this._fib[i-1] + $this._fib[i-2]; }

 $this._maxind := $arg;

 };

 public par:

 // function to get value for given element number

 $this.get := &{:

 // if element is not stored yet then compute it

 { $arg > $this._maxind: $this.compute($arg); }

 return $this._fib[$arg];

 };

 // function to get info string

 $this.as_string := &{:

 "Fibonacci " + $this._name + " computed up to element " + $this._maxind

 };

};

// construct two objects of the class

fibobj1 := class.construct(fibcl, "Fib1");

fibobj2 := class.construct(fibcl, "Fib2");

// get value of element number 20, outputs 6765

echo(fibobj1.get(20));

// outputs info string for the class object

echo(fibobj1);

// outputs info string for the second class object

echo(fibobj2);

CMPL 2.1.0 - Manual 41

 2.1.8.4 Special ordered sets

Classes for SOS and SOS2 are predefined in CMPL. The following functions are available for creating the ob-

jects for these:
sos.sos1(); Constructs an object for one new SOS1. Returns the container ob-

ject representing the SOS. Decision Variables must be added sub-

sequently to this object by member function add.
sos.sos1(var1, var2, …); Constructs an object for one new SOS1 over the given decision

variables. Returns the container object representing the SOS.
sos.sos1(ds, tp); Constructs an object for a new SOS1 with new decision variables

to be created. An array of decision variables is created via the

definition set ds with the data type tp. Returns the container

object that represents the SOS.
sos.sos2();

sos.sos2(var1, var2, …);

sos.sos2(ds, tp);

Same construction functions for a new SOS2

The objects have the following member functions:
name Sets the name that is used in the linearisation of the SOS. The ar-

gument is a string. For SOS2 it can also be two strings, the second

one being used in the linearisation of the sequence restriction of

the SOS2. Returns the container itself.
add Adds decision variables to the SOS. One or more decision variables

can be passed as arguments. Returns the container itself.
as_var Returns the decision variables from the SOS. This function is not

called directly, but is used to be able to use the SOS object itself

in variable definitions.
ord Returns a consecutively assigned number of the SOS object.

Examples:
var:

 x[]: sos.sos1([1..5], real[0..100]);
Creates an SOS of five new variables.

var:

 y[]: sos.sos2([1..10], real).name("test");
Creates an SOS2 of ten new variables

with the name test.
var:

 a, b, c: int[0..100];

 sos.sos1(a, b, c).name("test2");

Defines 3 variables and then create a

new SOS over these variables and give a

name to the SOS.
var:

 xm[1..5, 1..10]: real;

par:

 { i in 1..5:

 s[i] := sos.sos1();

 s[i].name("SOS_row_" + i);

 s[i].add(xm[i,]);

 }

Defines a matrix of variables.

For every row of the matrix an SOS is

created with the name SOS_row_1,

SOS_row_2, … . Each variable in this

row are added to the SOS.

CMPL 2.1.0 - Manual 42

CMPL handles SOS in two ways. If the solver invoked does not support special ordered sets directly then the

SOS are linearised in the form of suitable constraints. Otherwise the SOS are passed directly to the solver

(e.g. Cplex, Gurobi, Cbc and Scip) via the generated Free-MPS file.

 2.1.8.5 Other model reformulations

CMPL performs the following simple model transformations by default:

• Constraints without decision variable

This case can occur if the constraint actually contains no variable or the variables are multiplied by

parameters equal to zero. In addition, it is possible that logical operations in a constraint show that

the satisfaction of the constraint does not depend on the specified decision variables. In these

cases, the constraint is trivially always satisfied or can never be satisfied.

Such a constraint is automatically supplemented by an additional decision variable so that it can be

included in the LP problem matrix and appears in the result. If the restriction can never be satisfied,

this decision variable is restricted accordingly.

Alternatively, CMPL can remove trivially always satisfied constraints and issue an error message for a

constraint that can never be satisfied.

• Constraints with only one decision variable

A constraint with only one decision variable can be replaced by a bound for this decision variable.

By default, this is only done for unnamed constraints. Named constraints, on the other hand, remain

unchanged so that they can be included as a row in the LP problem matrix and appear in the result.

Alternatively, either all or none of such constraints can be replaced by bounds.

• Decision variables not used in any constraint

If a decision variable is defined but not used in any constraint, this decision variable has no meaning

for the optimisation and is not given a value.

By default, CMPL removes such decision variables. However, if the decision variable does not appear

in any constraint only because such constraints were removed by the previous transformations, an

additional constraint is created for the variable instead so that the variable is included as a column in

the LP problem matrix and appears in the result.

Alternatively, either all decision variables not used in constraints can be omitted or an additional

constraint is created for all of these decision variables.

CMPL 2.1.0 - Manual 43

 2.1.9 Short Language reference

Attributes
public

private

local

Specifies the validity scope of the symbol defined in the assignment

const The symbol is write protected.

ref Creates a reference to another symbol
new Even if the assigned symbol already exists, a new symbol is defined that

hides the original symbol.
ordered Ordered execution without parallel threads. Currently only effective for itera-

tions within a code block.
extern Assigns values from an external source. Mainly for internal use
assert Assert condition for symbol definition. Mainly for internal use
declare Declaration of symbol name
initial Performs an assignment only the first time.
break

continue

repeat

return

Control commands for code blocks

Literal values
number Value of data type real or int.
"string" Value of data type string.

If the string contains double quotes, they have to be escaped with \”.
true

false
Literal values of data type bin

Special values
inf Infinite value of data type real
invalid Marker for a non existing value
null Empty array
(omitted value) • After unary operators * and /:

Converted to the set of all index tuples with rank 1.

• Within tuple construction:

Converted to the full set of all possible index tuples of all ranks.

• Within array construction:

Marks a non existing element (equivalent to null).

• Within interval construction:

Converted to the infinite value (equivalent to -inf (on the left side of

operator ..) or to inf (on the right side of ..)

CMPL 2.1.0 - Manual 44

Object types (also usable as convert functions)
var

variables
Decision variables (columns within the linear programming model)

obj

objectives
Objective functions (neutral rows within the linear programming model)

con

constraints
Constraints (restricted rows within the linear programming model)

par

parameters
Everything else …

Data types (also usable as convert functions)
real Floating point number (uses internally C data type double)

The literal value consists of digits, decimal point and optional exponent.
int

integer
Integer number (uses internally C data type long).

The literal consists only of digits.
bin

binary
Numeric value that can only be 0 or 1 (subtype of int)

It can also be used as boolean value.

The literal values are true (value 1) and false (value 0).
numeric Union type for real and int
formula An expression of parameters and decision variables

Note that a formula is not a constraint, but a suitable formula can be conver-

ted into a constraint.
string Character string

Th literal value is enclosed in double quotes.
indexpart Union type for int and string
interval Interval between two numeric values

If one or both bounds are omitted, the interval on this side is unbounded.
tuple Tuple of an arbitrary number of elements (also no element) with any data

type

A special kind of tuple is an index tuple, which consists only of elements of

the data type indexpart.

set Set of an arbitrary number of elements (also no element). All elements must

be index tuples.
function Function object, constructed by &{ … }
container A value that contains other symbols (similar to struct or class in C)
type Data type
objecttype Object type

Assignment operators (assignments can only be used as statements, but not as part of other
expressions)
u := v; Declares symbol u, if not already declared. Assigns value v (converted ac-

cording to the attributes) to the symbol u.
u : v; Declares symbol u, if not already declared. Assigns value v (converted ac-

cording to the attributes) to the symbol u. The object type of converted

value v must be var, obj or con. The row or column in the resulting LP

problem matrix is named according symbol u.

CMPL 2.1.0 - Manual 45

(Besides being used as an assignment operator, the colon is also used as a

separator).
u ::= v; Declares symbol u with local validity scope, if not already declared. As-

signs value v (without conversion according to the attributes) to the symbol

u.
u += v;

u -= v;

u *= v;

u /= v;

Performs given operation (+, -, * or /) on values u and v (without con-

version according to the attributes). Assigns the result to symbol u.

u; Assignment without given right hand side.

Declares symbol u, if not already declared. A default value of an object type

is assigned to the symbol u. If not specified by attribute the default value for

par is invalid and the default value for var is real. Other object types

do not have a default value. For object type var the column in the resulting

LP problem matrix is named according symbol u.

Increment and decrement operators
++u

--u
Increments or decrements the value of symbol u and then gives the result-

ing value. The symbol u must be a symbol with a scalar int value.

This operation is guaranteed to be atomic when used with multi-threading,

while an assignment such as u += 1; is not guaranteed to be atomic.
u++

u--
Gives the current value of symbol u and then increments or decrements the

value of the symbol. u have to be a symbol with a scalar int value.

This operation is guaranteed to be atomic when used with multi-threading,

while an assignment such as u += 1; is not guaranteed to be atomic.

Computational operators
u + v Adds both operands. Operands can be:

• numeric or formula: numerical addition

• string: string concatenation

• set: set union

• null: the other operand is the result

If the operands are arrays, the operation is performed for each element.
+u Positive sign for the operand. Operand can be:

• numeric or formula: numerical sign

• null: the result is null

If the operand is an array, the operation is performed for each element.
u - v Subtract the second operand from the first. Operands can be:

• numeric or formula: numerical addition

• set: set of all elements of u which are not contained in v

• null: the other operand is the result

If the operands are arrays, the operation is performed for each element.
-u Negative sign for the operand. Operand can be:

CMPL 2.1.0 - Manual 46

• numeric or formula: numerical sign

• null: the result is null

If the operand is an array, the operation is performed for each element.
u * v Multiplication of both operands. Operands can be:

• numeric or formula: numerical multiplication

• set: set intersection
*u Converts value u to a set. Value must be indexpart or an index tuple (or

already a set).

e.g. *1 results to set(1)

If it is used before a bracket, then the constructed array receives a definition

set[1..], even if it contains only one element.

E.g. *(7) results in an array with one element and definition set *1.
u / v Division. Both operands must be numeric. The data type of the result value

is always real, even if both operands are int.
/u Operand must be a set (or already an indexpart). If the value is a set

with only one element, it is converted to that element. If the value is an-

other set, then it is marked, so that in a match operation or an indexation

operation with this set the corresponding part of the index is removed from

the result.

e.g. set([1,1], [2,3], [4,2]) *> [*, /set(1,2)] results to
set(1, 4)

If it is used before a bracket, then the constructed array gets a definition set

[*null].

e.g. /(7,) results to an array with one element and definition set

[*null].
u ^ v To the power of. The second operand must be numeric.The first operand

can be numeric or formula. If first operand is a formula, then second

operand must be a non-negative int.
a^T Transpose an operand array. Only for use in matrix multiplication.

If T follows directly after a closing square bracket, then ^ can be omitted

(e.g. a[]T is equivalent to a[]^T).

Comparison operators
u = v Equal to
u >= v Greater than or equal to
u <= v Less than or equal to
u <> v unequal
u > v Greater than
u < v Less than
u == v Total equality. The full operands are checked (not the elements of arrays),

result is scalar bin.
u != v Negated total equality. The full operands are checked (not the elements of

arrays), result is scalar bin.

Logical operators

CMPL 2.1.0 - Manual 47

u && v Combines both operands by logical And.

Operands must be convertible to bin, or be a formula with a boolean

value.
u || v Combines both operands by logical Or.

Operands must be convertible to bin, or be a formula with a boolean

value.
!u Logical negation of the operand.

Operand must be convertible to bin, or be a formula with a boolean value.

Construction operators
(u, v, …) Array construction from elements. There can be any number of elements, in-

cluding zero.
[u, v, …] Tuple construction from elements. There can be any number of elements, in-

cluding zero.
u..v Interval construction between lower and upper bound. Bounds must be nu-

meric (or inf). One or both bounds can be omitted.
u(v)w Constructs a set with elements from u to w with increment/decrement v.

All operands must be int.

e.g. 1(3)10 results to set(1, 4, 7, 10)

Set and array operators
s1 *> s2 Matching operation. Performs the intersection between both sets, and re-

moves then such parts from the tuples of the result set, which correspond to

parts of s2, which are no set or are marked with the unary / operator.
t in s Checks whether an index tuple t is element of the set s, result is bin.
@t in s For all tuples t in set s.

Only usable as a code block header.
t of a Checks whether an index tuple t is element of validset(a), result is

bin.
@t of a For all tuples t in validset(a).

Only usable as a code block header.

Optimisation sense operator
f -> d Specify the optimisation sense for the formula f. Only the values min and

max are permitted.

The result is a formula, which can be used as objective function.

Empty operator (two expressions directly adjacent, the operation is chosen by the token type)
n s n is a literal number, and s a symbol: equivalent to n*s

f (…) Function call: The second expression constructs an array, then the function

f is called with that array as argument.

f { … } Function call: The code block given as second expression is evaluated, then

CMPL 2.1.0 - Manual 48

function f is called with the code block result as argument.
a […] Indexing: The second expression constructs an index tuple or a tuple set,

then array a is indexed with that tuple or set.

But if the value of the expression a is a scalar data type, then the tuple is

used for data type restrictions, instead of indexing. In this case, the tuple

doesn’t need to be an index tuple, but must be suitable to restrict the data

type.
[…] a Array cast: The first expression constructs an index tuple or a tuple set, then

the definition set of array a is changed to this tuple or set.

Other syntactic elements: code blocks
{ … } Includes a code block.
| Separates the parts of a code block
& Only permitted directly before a code block: The code block is not evaluated

directly, but a function pointer to the code block is given.
&+ Like &, but the code block gets access to public symbols.

Other syntactic elements: separators
; Completes a statement
, Separates elements of lists:

• elements in array construction

• elements in tuple construction

• multiple left sides in an assignment

• multiple code block headers

: Ends a header:

• section header

• code block header
. Separates container value from contained part.

To the left of this must be a value that contains parts. Such a value is either

of data type container or of object type var, obj or con.

To the right of it must be the name of the contained part.

Other syntactic elements: symbol markers
@s Only usable in code block header: Marks symbol as a new defined code block

symbol.

Needed only if s is already a defined symbol.
\s Can only be used with code block control commands: Marks that the symbol

is to be used as a reference for the code block (instead of using it as an ex-

pression).

Only needed in rare cases when without it both interpretations would be syn-

tactically correct.
`s Can only be used directly before a code block. It marks that s is to be used

CMPL 2.1.0 - Manual 49

as name prefix for naming of rows and columns in the LP problem matrix (in-

stead of using it as function name).

Only needed if s is already a defined symbol.

Comments
//

#
comment up to end of line

/* … */ comment between /* and */

Special symbols
$arg Returns argument array within a function
$this Returns container object in which a member function is called
$curTuple Returns the current tuple of the innermost iteration
$curFullTuple Returns the current tuple of all iterations
$curDestName Returns or sets the current name prefix for new columns or lines in the LP

problem matrix. A setting is only effective up to the end of the current inner-

most code block, then the previous value is restored.
$curDestTuple Returns the tuple of all iterations up to the innermost iteration, in which

$curDestName is set. This tuple prefixes the index tuple in names for new

columns or lines in the LP problem matrix.
o.$destName Returns or sets the name for the column or line in the LP problem matrix

represented by o, which must be a scalar value of object type var, con or

obj.

e.g. if var: x[1..5];

then x[1].$destName results to "x"

and x[1].$destName := "X#";

changes its name in the LP problem matrix to X#[1].
o.$destTuple Gets or sets the index tuple for the column or line in the LP problem matrix

represented by o, which must be a scalar value of object type var, con or

obj.

e.g. if var: x[1..5]; then x[1].$destTuple results to [1] and

x[1].$destTuple := ["a", "b"]; changes its name in the LP prob-

lem matrix to x[a,b].

o.$destNameTuple Gets or sets the name and the index tuple (both together within a tuple) for

the column or line in the LP problem matrix represented by o, which must

be a scalar value of object type var, con or obj.

e.g. if var: x[1..5];

then x[1].$destNameTuple results to ["x", 1]

and x[1].$destNameTuple := "X#1";

changes its name in the LP problem matrix to X#1.

o.$destFullName Gets the name and the index tuple (together as a string) for the column or

CMPL 2.1.0 - Manual 50

line in the LP problem matrix represented by o, which must be a scalar

value of object type var, con or obj.

e.g. if var: x[1..5];

then x[1].$destFullName results to “x[1]”
o.$objectType Returns the object type of symbol or expression o.
o.$dataType Returns the data type of symbol or expression o.
o.$typeBase Returns the data type without type parameter of symbol or expression o.
o.$typePar Returns the type parameter tuple from the data type of symbol or expression

o. If the data type has no type parameter, it results to null.

Built-in functions for aggregating values
sum(a) Calculates a sum over all values of the argument array.

An operation is performed by the operator +, depending on the data type of

the operands.
max(a)

min(a)
Gives the maximum or the minimum value of the values in the argument ar-

ray. All values in the array must be numeric or interval. If a value is interval,

its upper (max) or lower (min) bound is used.
max

min
These function names are also used for the objective sense at the end of an

objective function.
and(a)

or(a)
All values of the argument array are combined by logical and or logical or. All

values must be either convertible to bin, or be a formula with boolean value.

Built-in functions for output
echo(a) Console output of the argument value. If the argument is an array, the val-

ues are separated by space.
error(s) Outputs an error message with the argument string and ends execution.
format(f,u,…) Creates a formatted string from the values of the arguments u,…, using the

format string f. This is done by the C function sprintf, see its documentation

for the format string.

Built-in functions for sets and arrays
len(s) Argument can be a set, a string, or an array of set or string values. Gives the

count of elements in the set (inf for an infinite set) or the count of charac-

ters in the string. If the argument is an array, it is done for every element of

the array and gives the results also as an array.

rank(s) Returns the rank of the argument value. For a set of tuples with different

ranks the result is an interval. For values other than tuple or set the result is

ever 1. If the argument is an array, it is done for every element of the array

and gives the results also as an array.
defset(a) Returns the definition set of array a

validset(a) Returns the set of all index tuples of array a, for which a value exists in the

array (i.e. for which the value is not invalid)

CMPL 2.1.0 - Manual 51

If the array contains only valid values, then validset results the same as

defset.
valid(a) Checks if all elements of the array are valid. Equivalent to valid-

set(a)==defset(a)
def(a) Counts the elements of the array. Equivalent to len(defset(a))
count(a) Counts the valid elements of the array. Equivalent to len(validset(a))
array(s) Argument can be a set or a tuple. Returns an array of the elements of the set

or the parts of the tuple.

e.g. with tuple: array([1..2, 1]) returns (1..2, 1)

e.g. with set: array(set([1..2, 1])) returns ([1,1], [2,1])

Built-in mathematical functions
dim(a) Gives the first part of the last tuple of the definition set of the argument ar-

ray. For instance if a has the definition set [1..3, 1..5], then dim(a)

returns 3, and dim(a[1,]) returns 5.
div(c,d)

mod(c,d)
Integer division or remainder of integer division. Both arguments must be

scalar integer numbers.
srand(x) Initialisation of a pseudo-random number generator using the argument x.

The argument must be a scalar number and is converted to int. Returns the

value of the argument x.
rand(x) Returns an integer random number in the range 0<= rand < x. The argu-

ment must be a scalar number and is converted to int.
sqrt(x) Square root function: The argument must be a scalar number and is conver-

ted to real.
exp(x) Exp function: The argument must be a scalar number and is converted to

real.
ln(x) Natural logarithm: The argument must be a scalar number and is converted

to real.
lg(x) Common logarithm: The argument must be a scalar number and is converted

to real.
ld(x) Logarithm to the basis 2: The argument must be a scalar number and is con-

verted to real.
sin(x) Sine function measured in radians: The argument must be a scalar number

and is converted to real.
cos(x) Cosine function measured in radians: The argument must be a scalar number

and is converted to real.
tan(x) Tangent function measured in radians: The argument must be a scalar num-

ber and is converted to real.
acos(x) Arc cosine function measured in radians: The argument must be a scalar

number and is converted to real.
asin(x) Arc sine function measured in radians: The argument must be a scalar num-

ber and is converted to real.
atan(x) Arc tangent function measured in radians: The argument must be a scalar

number and is converted to real.
sinh(x) Hyperbolic sine function: The argument must be a scalar number and is con-

verted to real.

CMPL 2.1.0 - Manual 52

cosh(x) Hyperbolic cosine function: The argument must be a scalar number and is

converted to real.

tanh(x) Hyperbolic tangent function: The argument must be a scalar number and is

converted to real.
abs(x) Absolute value: The argument must be a scalar number.
ceil(x) Smallest integer value greater than or equal to a given value. The argument

must be a scalar number.
floor(x) Largest integer value less than or equal to a given value. The argument must

be a scalar number.
round(x) Simple round: The argument must be a scalar number.

Class support
class Namespace for related functions
class.construct(f,a) Constructs a new object of the class, using the class constructor function f,

which is given a as argument.
class.runat(c,f,a) Calls the function f with argument a, with $this within the function set to

the container c.
class.copy(c) Creates a copy of the container c, by assignments all of its elements to the

new container.
class.refcopy(c) Like class.copy, but all assignments of the elements are made using

ref.
class.finalize(c) Marks the container c as final, which prohibits the creation of new ele-

ments in the container.
c.as_string If an element as_string is defined in the container c, then it is called as

function when the container is converted to a string, for instance in
echo(c);

c.as_var If an element as_var is defined in the container c, then it is called as

function when the container is converted to decision variables, for instance

by using it within a var section.
c.as_obj If an element as_obj is defined in the container c, then it is called as

function when the container is converted to an objective function, for in-

stance by using it within a obj section.
c.as_con If an element as_con is defined in the container c, then it is called as

function when the container is converted to constraints, for instance by us-

ing it within a con section.

SOS support
sos Namespace for related functions
sos.sos1() Constructs an object for one new SOS. Returns the container object repres-

enting the SOS. Decision Variables must be added subsequently to this object

by member function add.
sos.sos1(v1,v2,…) Constructs an object for one new SOS over the given decision variables. Re-

turns the container object representing the SOS.
sos.sos1(ds,tp) Construct an object for one new SOS with new created decision variables. An

CMPL 2.1.0 - Manual 53

array of decision variables with definition set ds is created, all having the

data type tp. Returns the container object representing the SOS.
sos.sos2()

sos.sos2(v1,v2,…)

sos.sos2(ds,tp)

Same constructing functions for SOS2

c.name(s) Assigns the name s to the SOS object c.
c.add(v1,v2,…) Adds the given decision variables to the SOS object c.
c.ord() Gives the internal number of the SOS object c.
c.as_var() Gives the decision variables belonging to SOS object c. Implicitly called if the

SOS object is used within a var section.

 2.2 CMPL Header

 2.2.1 CMPL Header elements

A CMPL header is intended to define CMPL options, solver options and display options for the specific CMPL

model. An additional intention of the CMPL header is to specify external data files which are to be connected

to the CMPL model. The elements of the CMPL header are not part of the CMPL model and are processed

before the CMPL model is interpreted.

The elements of CMPL header correspond to the command line options that can be used in the call to CMPL.

Exceptions are only those command line options that must already be evaluated before the CMPL file is read

and therefore cannot be used in CMPL header.

Each line for CMPL header starts with % as the first non-whitespace character. This is followed by the name

of the command line option (without the -, which introduces a command line option in the command line).

This is followed by the arguments of the command line option, separated by whitespace.

Alternatively, the line can begin with %arg. In this case, command line options and their arguments can be

specified as on the command line itself (i.e. with - in front of the name of the command line option). Several

command line options can then also be on one line.

There are the following minor differences in syntax between specifying options directly on the command line

or in the CMPL header:

• CMPL comments can also be used in CMPL header lines as desired.

• In the CMPL header, only double quotes can be used to enclose arguments that contain

whitespaces. Double quotes contained therein must be escaped with \. On the command line, how-

ever, the operating system-specific rules apply.

• Except for %arg, a value is also considered an argument if it begins with -. With %arg, on the other

hand, a new command line option is started with it, so that several command line options can be in

one CMPL header line. If the value is enclosed in double quotes, it is also considered an argument

with %arg.

•

CMPL 2.1.0 - Manual 54

Important uses of CMPL headers include specifying options for the solver and for the result display:

%solver solverName Specifies the solver

%opt solverName solverOpt [solverOptVal] Specifies an option for a solver

%display var|con=name[*][,name1[*]] Sets variable name(s) or constraint name(s) that
are to be displayed in one of the solution re-
ports. Different names are to be separated by
spaces.

If name is combined with the asterix * then all

variables or constraints with names that start

with name are selected.

%display nonZeros Only variables and constraints with nonzero
activities are shown in the solution report.

%display ignoreCons Ignores constraints in the solution report. Only
variables are shown in the solution report.

%display ignoreVars Ignores variables in the solution report. Only
constraints are shown in the solution report.

%display solutionPool Gurobi and Cplex are able to generate and store
multiple solutions to a mixed integer program-
ming (MIP) problem. With the display option
solutionPool feasible integer solutions found
during a MIP optimisation can be shown in the
solution report. It is recommended to control the
behaviour of the solution pool by setting the
particular Gurobi or Cplex solver options.

Examples:
%solver glpk GLPK is used as the solver.
%solutionAscii CMPL writes the optimisation results in an ASCII

file.
%arg -solver cbc ↵

 -url http://194.95.44.187:8008
CBC is to be executed on a CMPLServer located

at 194.95.44.187.
%opt cbc ratio=0.1 If CBS is the invokes solver then a MipGap of

10% is used.
%opt glpk nopresol If GLPK is used then the pre-solver is switched

off.
%display var=x Only the variable x is to be displayed in the

solution report.
%display con=x*,y* All constraints with names that start with x or y

are shown in the solution report.

 2.2.2 Include

The command line option include can be used to specify a CMPL file to be included. It is particularly useful

to use this as a CMPL header, as the specified CMPL file is inserted at this point.

%include fileName Includes the specified CMPL file (relative to the directory in which the current
CMPL file is located).

CMPL 2.1.0 - Manual 55

If the file name contains spaces, then it must be enclosed in double quotes.

If the file name contains a directory specification, then / has to be used as

separator (independently of the operation system).

The following CMPL file parameters.cmpl is used for the definition of a couple of parameters:
c := (1, 2, 3);

b := (15, 20);

A := ((5.6, 7.7, 10.5),

 (9.8, 4.2, 11.1));

parameters.cmpl

par:

 %include parameters.cmpl

var:

 x[defset(c)]: real[0..];

obj:

 c^T * x -> max;

con:

 A * x <= b;

Using include CMPL generates the following

model:

1 ⋅ x1+2⋅ x2+3 ⋅ x3→max!
s . t .
5.6 ⋅ x1+7.7 ⋅ x2+10.5 ⋅ x3≤15
9.8 ⋅ x1+4.2 ⋅ x2+11.1 ⋅ x3≤20
x j ≥0 ; j=1 (1) 3

 2.2.3 CmplData

 2.2.3.1 CmplData in CMPL Header

CmplData is used to separate model and data in CMPL. The command line option data is used for this pur-

pose. The arguments of this command line option define parameters and sets for CMPL, whose concrete val-

ues are read from a CmplData file. It makes sense to use this command line option in the CMPL header, but

of course it can also be used on the command line itself.

Usage CMPL header for defining external data:

%data [filename] : [set1 set[[rank]]] [, set2 set[[rank]] , …]

%data [filename] : [param1] [, param2 , …]

%data [filename] : [paramarray1[set]] [, paramarray2[set] , …]

filename File name of the CmplData file

If the file name contains white spaces the name

must be enclosed in double quotes.

If filename is not specified the generic name

modelname.cdat will be used, where model-

name.cmpl is the name of the cmpl file.

[set1 set[[rank]]][,set2 set[[rank]],

…]
Specifies a set with the name set1 and the rank
rank

CMPL 2.1.0 - Manual 56

Specification of the rank is optional. If specified,

then it must match the rank within the CmplData

file.

For more than one set the sets are to be separ-

ated by commas.

[param1] [, param2 , …] Specifies a scalar parameter

If more than one parameters are to be specified

then the parameters are to be separated by com-

mas.

[paramarray1[set]][,paramarray2[set],…] Specifies a parameter array and the set over
which the array is defined

For more than one parameter array the entries are

to be separated by commas.

The easiest form to specify an external data is %data. In this case a generic filename modelname.cdat

will be used and all sets and parameters that are defined in this file will be read.

If parameters and sets are specified in %data, then all definitions of the parameters and sets can be mixed

with another. But a set must be specified before it is used in a definition of a parameter array.

Any number of CMPL header lines can be specified, both for the same data file and for any number of other

data files.

Examples:
%data myProblem.cdat: n set, a[n] Reads the set n and the vector a which is defined

over the set n from the file myProblem.cdat
%data myProblem.cdat Reads all parameters and sets that are defined in the

file myProblem.cdat
%data : n set[1], a[n] Reads (assuming a CMPL model name

myproblem2.cmpl) the 1-tuple set n and the vector

a which is defined over n from myProblem2.cdat.
%data Assuming a CMPL model name myproblem2.cmpl all

sets and parameters are to be read from myProb-
lem2.cdat.

%data : routes set[2],costs[routes] Assuming a CMPL model name myproblem.cmpl the

2-tuple set routes and the matrix costs defined over

routes are to be read from myProblem.cdat.

If data is used as a command line option directly on the command line, the corresponding definitions in-

cluding the file name can be specified altogether as a single argument string in double quotes. Even then,

this command line option can be used as often as desired.

CMPL 2.1.0 - Manual 57

 2.2.3.2 CmplData file format

A CmplData file is a plain text file that contains the definition of parameters and sets with their values in a

specific syntax. The parameters and sets can be read into a CMPL model by using the command line option

data, for instance by using it in CMPL header.

Usage:

 %name < numberOrString > # scalar parameter

 %name set[[rank]] < setExpression > # set definition

 %name [set] [= default] [indices] < listOfNumbersOrStrings >

parameter array

 #text # comments

Excluding comments each CmplData definition starts with %.

%name < numberOrString > A scalar parameter name is assigned a single string or
number.

%name set[[rank]] < setExpression

>
Definition of an n-tuple set

A set definition starts with the name followed by the

keyword set. For n-tuple sets with n>1 the rank of the

set is to be specified enclosed by square brackets.

For enumeration sets the entries of the sets are separ-

ated by white spaces and imbedded in angle brackets. It

is also possible to define algorithmic sets in normal CMPL

syntax.

%name [set] [= default] [indices]

< listOfNumbersOrStrings >
Definition of a parameter array

The specification of a parameter array starts with the

name followed by one or more sets, over which the array

is defined. If more than one set is used then the sets

have to be separated by commas.

The set or sets have to be defined before the parameter

definition.

If the data entries are specified by their indices (keyword

indices) then a default value can be defined.

The data entries can be strings or numbers and have to

be separated by white spaces and imbedded in angle

brackets.

CMPL 2.1.0 - Manual 58

If the data entries are specified by their indices then each

data entry has to start with the indices followed by the

value and separated by white spaces. A thousand separ-

ator is not to be used.

For real numbers, the decimal separator is always a dot,

regardless of the language used by the operating system.

If not so then the order of the elements are given by the

natural order of the set or sets.

Examples:
%a < 10 > Defines a scalar parameter a and assigns the

number 10.
%s set < 0..6 > s is assigned s∈(0,1,…,6)
%s set < 10(-2)4 > s is assigned s∈(10,8,6,4)
%prod set < bike1 bike2 >

%prod set < "bike 1" "bike 2" >
1-tuple enumeration set of strings

%a set< 1 a 3 b 5 c >

%x[a] < 10 20 30 40 50 60 >
1-tuple enumeration set of strings and integers

vector x identified by the set a is assigned an

integer vector
%data : a set, x[a]

echo(x[1]);

echo(x["a"]);

{ ordered @i in a: echo(x[i]); }

reads the set a and the vector x into a CMPL

model

The following user messages are displayed:
10

20

10 20 30 40 50 60
%n set < 1..3 >

%a[n,n] = 0 indices < 1 1 1

2 2 1

3 3 1 >

%a[n,n] < 1 0 0

 0 1 0

 0 0 1 >

Defines a 3x3 identity matrix

Alternative formulation

%x set < 1..2 >

%y set < 1..2 >

%z set < 1..2 >

Definition of a data cube with the dimension
x,y,z

CMPL 2.1.0 - Manual 59

%cube[x,y,z] < 1 2 3 4 5 6 7 8 > x y z value
1 11 1
1 12 2
1 21 3
1 22 4
2 11 5
2 12 6
2 21 7
2 22 8

%data : x set, y set, z set, cube[x,y,z]

{ @i in x, @j in y, @k in z:

echo(i+","+j+","+k+":"+cube[i,j,k]);

}

Reads the sets x,y,z and the cube into a

CMPL model

The following user messages are displayed:
1,1,1:1

1,1,2:2

1,2,1:3

1,2,2:4

2,1,1:5

2,1,2:6

2,2,1:7

2,2,2:8
%cube[x,y,z] = 0 indices <

1 1 1 1

2 2 2 1

 >

Defines the following data cube:

x y z value
111 1
112 0
121 0
122 0
211 0
212 0
221 0
222 1

%x set[3] <

 1 1 1

1 1 2

1 2 1

1 2 2

2 1 1

2 1 2

2 2 1

2 2 2

 >

%cube[x] < 1 2 3 4 5 6 7 8 >

A cube defined over a 3-tuple set:

x y z value
1 11 1
1 12 2
1 21 3
1 22 4
2 11 5
2 12 6
2 21 7
2 22 8

CMPL 2.1.0 - Manual 60

%data : x set[3], cube[x]

{ @i in x: echo(i +":"+cube[i]); }

Reads the 3-tuple set x and the parameter array
cube

The following user messages are displayed:
[1, 1, 1]:1

[1, 1, 2]:2

[1, 2, 1]:3

[1, 2, 2]:4

[2, 1, 1]:5

[2, 1, 2]:6

[2, 2, 1]:7

[2, 2, 2]:8
%x set[3] < 1 1 1 1 1 2 1 2 1 1 2 2

2 1 1 2 1 2 2 2 1 2 2 2 >

%cube[x] = 0 indices < 1 1 1 1

2 2 2 1 >

Data cube defined over x

x y z value
1 11 1
1 12 0
1 21 0
1 22 0
2 11 0
2 12 0
2 21 0
2 22 1

%routes set[2] < p1 c1

p1 c2

p1 c4

p2 c2

p2 c3

p2 c4

p3 c1

p3 c3 >

%c[routes] < 3 2 6 5 2 3 2 4 >

Defines a 2-tuple set routes and a matrix c

that is defined over routes

%data : routes set[2], c[routes]

{ @i in routes:

 echo(i + " : "+ c[i]);

}

Reads the 2-tuple set routes and the matrix c

into a CMPL model

The following user messages are displayed:
["p1", "c1"] : 3

["p1", "c2"] : 2

["p1", "c4"] : 6

["p2", "c2"] : 5

["p2", "c3"] : 2

["p2", "c4"] : 3

["p3", "c1"] : 2

["p3", "c3"] : 4

CMPL 2.1.0 - Manual 61

 2.2.4 CmplXlsData

 2.2.4.1 CmplXlsData in CMPL Header

CmplXlsData is CMPL's interface for reading sets and parameters from an Excel file and for writing optimisa-

tion results to an open Excel file. If the Excel file is not open, CMPL will open it automatically and the results

of the optimisation can be seen immediately. Please note, this feature is only available on Windows and ma-

cOS if Microsoft Excel is installed on this system. CmplXlsData is implemented with Python3 using the Python

for Excel (open-source) library by xlwings (www.xlwings.org).

The command line option xlsdata is used for this purpose. The arguments of this command line option

define parameters and sets for CMPL, whose source Excel file and the corresponding cell ranges are spe-

cified in a CmplXlsData file. It makes sense to use this command line option in the CMPL header, but of

course it can also be used on the command line itself.

Usage CMPL header for defining external data:

%xlsdata [filename] : [set1 set[[rank]]] [, set2 set[[rank]] , …]

%xlsdata [filename] : [param1] [, param2 , …]

%xlsdata [filename] : [paramarray1[set]] [, paramarray2[set] , …]

filename File name of the CmplXlsData file

If the file name contains white spaces the name

must be enclosed in double quotes.

If filename is not specified the generic name

modelname.xdat will be used, where model-

name.cmpl is the name of the cmpl file.

[set1 set[[rank]]][,set2 set[[rank]],

…]
Specifies a set with the name set1 and the rank
rank

Specification of the rank is optional. If specified,

then it must match the rank within the CmplXls-

Data file.

For more than one set the sets are to be separ-

ated by commas.

[param1] [, param2 , …] Specifies a scalar parameter

If more than one parameters are to be specified

then the parameters are to be separated by com-

mas.

[paramarray1[set]][,paramarray2[set],…] Specifies a parameter array and the set over
which the array is defined

For more than one parameter array the entries are

to be separated by commas.

CMPL 2.1.0 - Manual 62

The easiest form to specify an external data is %xlsdata. In this case a generic filename model-

name.xdat will be used and all sets and parameters that are defined in this file will be read.

If parameters and sets are specified in %data, then all definitions of the parameters and sets can be mixed

with another. But a set must be specified before it is used in a definition of a parameter array.

Any number of CMPL header lines can be specified, both for the same data file and for any number of other

data files.

 2.2.4.2 CmplXlsData file format

A CmplXlsData file is a plain text file that contains the definition of parameters and sets with the cell ad-

dresses of their values in the specified Excel file in a specific syntax. Additionally, the optimisation results to

be written to Excel with their cell addresses can be specified in this file. The parameters and sets can be

read into a CMPL model by using the command line option xlsdata, for instance by using it in CMPL

header.

A CmplXlsData file contains usually the three sections @source, @input and @output. The @meta section

is intended to specify the Excel file and optionally the sheet to be used to read sets and parameters and to

write the optimisation results. If the Excel file is not already open, it will be opened automatically when the

CmplXlsData file is accessed. In the @input section, the sets and parameters to be read into the Cmpl

model have to be specified with their cell ranges. In contrast to a CmplData file, such a specification can

only be specified in one line. The @output section specifies the optimisation result elements to written to

the Excel file. This results are displayed directly in the Excel file.

Usage:

 #text # comments

 @source # section for specifying the Excel

 file and the default sheet

 %file < excelFileName > # name of the Excel file

 [%sheet < activeSheetName >] # optional - name of the active

 sheet

 @input # section for specifying sets and

 parameters to be read into Cmpl

 %name < cellReference > # scalar parameter

 %name set[[rank]] < cellRangeReference > # set definition

parameter array

 %name [set[,set1, ...]] < cell_range_reference >

CMPL 2.1.0 - Manual 63

 @output # section for specifying the

 optimisation results to be written

 to Excel

singleton variable or constraint

 %name.activity < cell_reference >

 %name.type < cell_reference >

 %name.lowerBound < cell_reference >

 %name.upperBound < cell_reference >

 %name.marginal < cell_reference >

 # array of variables or constraints

 %name[set[,set1, ...]].activity < cell_range_reference >

 %name[set[,set1, ...]].type < cell_range_reference >

 %name[set[,set1, ...]].lowerBound < cell_range_reference >

 %name[set[,set1, ...]].upperBound < cell_range_reference >

 %name[set[,set1, ...]].marginal < cell_range_reference >

general solution information

 %objName < cell_reference >

 %objSense < cell_reference >

 %objValue < cell_reference >

 %objStatus < cell_reference >

 %nrOfVars < cell_reference >

 %nrOfCons < cell_reference >

 %solverName < cell_reference >

 %solverMsg < cell_reference >

@source Section for specifying the Excel file and the default
sheet

%file < excelFileName > Name of the Excel file

The name can contain spaces, but it is not allowed to
enclose the file name with double quotes.

[%sheet < activeSheetName >] Optional argument to specify the name of the active
sheet

In each entry for the inputs and the outputs, the sheet
can be specified directly.

@input Section for specifying sets and parameters to be read
into Cmpl

%name < cellReference > A scalar parameter name is assigned a single string or
number available in Excel at the specified cell.

CMPL 2.1.0 - Manual 64

%name set[[rank]] < cellRangeRefer-

ence >
Definition of an n-tuple set

A set definition starts with the name followed by the

keyword set. For n-tuple sets with n>1 the rank of

the set is to be specified enclosed by square brackets.

The set is assigned the entries available in Excel in the

cells specified in the cell range reference.

Please note that whitespaces are not allowed as part of

an index.

%name [set[,set1, ...]]

<cellRangeReference >
Definition of a parameter array

The specification of a parameter array starts with the

name followed by one or more sets, over which the ar-

ray is defined. If more than one set is used then the

sets have to be separated by commas.

The set or sets have to be defined before the para-

meter definition.

The data entries can be strings or numbers and have to

be found at the specified cell range reference in Excel.

@output Section for specifying the optimisation results to be
written to Excel

%name.activity< cell_reference >

%name.type < cell_reference >

%name.lowerBound < cell_reference >

%name.upperBound < cell_reference >

%name.marginal < cell_reference >

Singleton variable or constraint

For a singleton variable or constraint named name, the
activity, type, limits and dual values can be written to
Excel in the cell specified by cell_reference.

The name is followed by a dot and one of the keyword
(activity, type, lowerbound, upperbound, mar-
ginal) for the information to be written to Excel.

%name[set[,set1, ...]].activity <

cell_range_reference >

%name[set[,set1, ...]].type <

cell_range_reference >

%name[set[,set1, ...]].lowerBound <

cell_range_reference >

%name[set[,set1, ...]].upperBound <

cell_range_reference >

%name[set[,set1, ...]].marginal <

cell_range_reference >

Arrays of variables or constraints

A complete array of variables or constraints named
name, the activity, type, limits and dual values can be
written to Excel in the specified cell range.

The specification of an array of variables or constraints
starts with the name followed by one or more sets,
over which the array is defined. If more than one set is
used then the sets have to be separated by commas.
This is followed by a dot and one of the keywords for
the attributes activity, type, lowerbound, up-
perbound, marginal of the result information to be
written to Excel.

A single element of the array cannot be accessed.

CMPL 2.1.0 - Manual 65

%objName < cell_reference > Writes the name of the objective function to Excel in
the specified cell

%objSense < cell_reference > Writes the objective sense to Excel in the specified cell

%objValue < cell_reference > Writes the objective function value to Excel in the spe-
cified cell

%objStatus < cell_reference > Writes the status of the objective function to Excel in
the specified cell

%nrOfVars < cell_reference > Writes the number of the variables to Excel in the spe-
cified cell

%nrOfCons < cell_reference > Writes the number of the constraints to Excel in the
specified cell

%solverName < cell_reference > Writes the name of the solver invoked to Excel in the
specified cell

%solverMsg < cell_reference > Writes a message of the solver invoked to Excel in the
specified cell

The following example illustrates the functionality of CmplXlsData for the simple production mix problem be-

low:

1 ⋅ x1+2 ⋅ x2+3 ⋅ x3→max !
s .t .
5.6 ⋅ x1+7.7 ⋅ x2+10.5 ⋅ x3 ≤ 15
9.8 ⋅ x1+4.2 ⋅ x2+11.1 ⋅ x3≤ 20
x j ≥ 0; j=1 (1)3

This model seeks the quantities of three products depending on the capacities of two machines in order to

maximise the total profit contribution margin. The coefficients in the objective function are the unit contribu-

tion margins. There are two machines whose capacities of 15 hours for the first machine and 20 hours for

the second machine cannot be exceeded. The utilisation of the machines as a function of the production

quantities is given in the left-hand sides of the two constraints. The coefficients are the utilisation of a ma-

chine per unit of product.

The sets and parameters are organised in an Excel file named ExampleData.xlsx in the ProdProg sheet

as shown in the following screenshot. Afterwards, the results of the optimisation are also written to this

sheet. In contrast to CMPLData, the notation of the operating system language can be used for real numbers

that are to be read into the Cmpl model. For example, the Excel example uses a German notation for the

data of the A matrix in the cell range D16:F17.

CMPL 2.1.0 - Manual 66

The corresponding Cmpl file prodProg.cmpl starts in the first line with the header entry for processing

the CmplXlsData file prodProg.xdat. This line specifies the sets and the parameter arrays to be read into

the Cmpl model, which are then used in the following sections of the model.
%xlsdata prodProg.xdat : P set, M set, c[P], b[M], A[M,P]

var:
x[P]: real;
z: real;

obj:
z -> max;

con:
profit: c^T * x = z;
machine: A * x <= b;

In addition to the array of variables x for the production quantities, a real variable z is defined to store the

objective function value. Therefore, the value of the variable z is to be maximised. The original objective

function is defined as a constraint profit and its value must be equal to the variable z. The constraints for

the two machines are defined in the last line.

The CmplXlsData file prodProg.xdat starts with a source section with the entries for the Excel file Ex-

ampleData.xlsx and the sheet ProdProg.

CMPL 2.1.0 - Manual 67

@source
%file < ExampleData.xlsx >
%sheet < ProdProg >

The following input section usually starts with the definition of index sets that will later be used for para-

meter arrays. The line %P set < D13:F13 > defines a set P and assigns the data given in the Excel

sheet in the cell range D13:F13. This set is the set of the products and is assigned the values "P1","P2"

and "P3". The following line defines the set of the machines named M, which is assigned the values "M1"

and "M2" (from of the cell range C16:C17).

@input
%P set < D13:F13 >
%M set < C16:C17 >

%c[P] < D14:F14 >
%A[M,P] < D16:F17 >
%b[M] < G16:G17 >

The set P is used for the definition of the vector of the objective function coefficients c. This vector is as-

signed the values in the cell range D14:F14. For the usage of the capacities of the machines per unit of

the products, a matrix A is defined in the next row. For this purpose, the set M is used for the rows and the

set P for the columns. The data given in the cell range D16:F17 are assigned to the matrix. The last

parameter array to be defined is the vector b of the capacities of the machines using the set M. The both

capacities are given in G16:G17.

The output section is intended to write all requested results of the optimisation into the specified Excel

sheet. This can be general information about the solution, the model and the solver invoked as shown in the

following listing:
@output
%objValue < D26 >
%objSense < D27 >
%nrOfVars < D28 >
%nrOfCons < D29 >
%solver < D30 >
%solverMsg < D31 >

The objective function value of 4.28571 is to be written in the cell D26. Please note, the format of the res-

ults written into the Excel sheet follows notation of the operating system language (here German). The in-

formation about the objective sense, the number of the variables and constraints are written into the cells

D27, D28 and D29. The name of the solver and a general message of this solver shall be shown after the

optimisation in the cells D30 and D31.

CMPL 2.1.0 - Manual 68

All result information of an array of variables can be written using the attributes activity, type, lower-

bound, upperbound, marginal into the specified cell ranges. All numeric values are written as real num-

bers. If a value is equal to infinity (or negative infinity) the string "inf" ("-inf") is written. The margin-

als of the variables can be either reduced costs (activity equal to zero, negative marginal value) or shadow

prices if the activity of the variable is equal to its upper bound. The type of a variable can be "C" for a real

variable, "I" for integer and "B" vor binary.

%x[P].activity < D18:F18 >
%x[P].marginal < D19:F19 >
%x[P].name < D20:F20 >
%x[P].type < D21:F21 >
%x[P].lowerBound < D22:F22 >
%x[P].upperBound < D23:F23 >

If a variable is a singleton variable the same attributes can used to write the result information. The follow-

ing listing shows the access to the results information of the variable z as substitute of the objective func-

tion.
%z.activity < D34 >
%z.marginal < D35 >
%z.name < D36 >
%z.type < D37 >
%z.lowerBound < D38 >
%z.upperBound < D39 >

CMPL 2.1.0 - Manual 69

The result information of a singleton constraint or an array of constraints can be accessed in the same way

as the variables with the attributes activity, type, lowerbound, upperbound, marginal as shown

below. All numeric values are written as real numbers. If a value is equal to infinity (or negative infinity) the

string "inf" ("-inf") is written. The marginals of the constraints are shadow prices if a constraint is a

bottleneck. The type of a constraint can be "L" if the left-hand side of the constraint is less than or

equal to the right-hand side, "G" for greater than or equal and "E" for Equality.

%machine[M].activity < I16:I17 >
%machine[M].marginal < J16:J17 >
%machine[M].name < K16:K17 >
%machine[M].type < L16:L17 >
%machine[M].lowerBound < M16:M17 >
%machine[M].upperBound < N16:N17 >

%profit.activity < D43 >
%profit.marginal < D44 >
%profit.name < D45 >
%profit.type < D46 >
%profit.lowerBound < D47 >
%profit.upperBound < D48 >

CMPL 2.1.0 - Manual 70

 2.3 Incompatibilities with Cmpl 1.12

Since CMPL has been fundamentally redeveloped, there is no complete backwards compatibility. Known in-
compatibilities with the previous version are:

• echo and error
These are now functions whose argument must be enclosed in parentheses. In the previous version,
no brackets were required here.

• Use of := within a code block header
A code block header { i := s: ... } with a set s now leads to an assignment of the set to
the code block symbol i. In the previous version, it led to iteration over the set instead. Now an it-
eration can only be expressed by { i in s: ... }.

• Write protection for code block symbols

In contrast to the previous version, code block symbols can no longer be assigned in the code block
body, but only receive their value initially in the code block header. A symbol used as a separate
counter, as is typical for loops formulated with repeat, can therefore no longer be a code block sym-
bol.

• Referencing a code block in break, continue or repeat

Only the first code block symbol defined in a code block can be used as a reference to it. In the pre-
vious version, referencing was also possible via other code block symbols defined in it and via a
name preceding the code block.

• Code block with more than one header

Even if a code block has more than one comma-separated headers, alternatives in the code block as
well as break, continue and repeat refer to the entire code block itself. In the previous version,
it referred instead only to the last of the specified headers

• Execution order in iterations without the keyword ordered

The execution of an iteration in a code block is done in the default order of the set being iterated
over when only one thread is used. If more than one thread is used, there is no fixed execution or-
der at all, but it is executed in parallel as far as the maximum number of threads allows. In the pre-
vious version, iteration was done in user order of the set instead. For this behaviour, the use of the
keyword ordered is now necessary.

CMPL 2.1.0 - Manual 71

• Use of default for alternatives in a code block header

A keyword default, as used in the previous version for an unconditional alternative in a code
block, no longer exists. For such an unconditional alternative, simply use an empty header instead.
Nevertheless, the old use of default continues to work. This is because it now corresponds to the
definition of a new referencing code block symbol with the name default.

• Assignment with =

The assignment with =, which was still possible in the previous version, has been dropped (it was
already obsolete in the previous version). The operator = now only serves as a comparison operator.
For an assignment, := must be used instead.

• Operators << and element

The operators << and element implemented in the previous version have been dropped. Instead,
the operator in must be used.

• Operators div and mod

The operators div and mod implemented in the previous version have been dropped. Instead, the
functions div and mod must be used.

• Semantic of []

In the previous version, [] stood for the infinite set of all 1-tuples. The infinite set of all 2-tuples
was then expressed as [,], etc. Now [] stands for the infinite set of all tuples with any rank. A
tuple construction of the kind [,] is arbitrarily possible, and also gives the infinite set of all tuples
with any rank. The infinite set of all 1-tuples can be represented with [*].

• String literals

A literal string must be enclosed in double quotes. In the previous version, it was alternatively pos-
sible to use single quotes.

• Assignment with tuple disaggregation

In the previous version, it was possible to use an assignment of the type [a,b] := t; when t is a
2-tuple. Such an assignment is no longer possible because a tuple construction expression is not al -
lowed on the left-hand side of an assignment. As a substitute, tuple matching can be used in a code
block header, for example { [@a, @b] = t: ... }.

• Associativity for set expressions of the form 1(1)n

In the previous version, the associativity of such an expression was lower than that of numerical op-
erations, so that, for example, 1(1)n+1 was semantically equivalent to 1(1)(n+1). Now the asso-
ciativity of such an expression is higher than that of numerical operations, and 1(1)n+1 is con-
sidered as (1(1)n)+1, which leads to an error message due to incompatible operands in the exe-
cution of the addition. For the former semantics, the example must now be written 1(1)(n+1).

• Line names with $ substitutions

The possibility in the previous version to use $...$ substitutions in row names has been completely
dropped. The names of matrix lines are now assigned via regular assignments to CMPL symbols with
the assignment operator :. Index specifications can be used as usual in CMPL.

CMPL 2.1.0 - Manual 72

• Changed semantics for function defset

This function returns the tupleset of all indices of an array. In contrast, the previous version re-
turned a set of 1-tuples only from the first part of the indices. So the semantics is only unchanged in
the case when the argument array contains only 1-tuples as indices.

• Non implemented functions

The functions readstdin and readcsv, which existed in the previous version, are currently not
implemented. It has not been decided whether and with which semantics they will be implemented
again.

• Not implemented operations for sets

The operations * and - are currently not implemented for sets. Implementation is planned.

• Keywords .integer. and .string. are dropped

In the previous version, these keywords referred to infinite sets consisting of all integer values and
all strings. They are dropped without replacement.

• Function type is dropped

In the previous version, the data type of an argument could be analysed with this function. Now
type designates the data type of a data type instead. For getting the data type of an expression or
a decision variable x now x.$type can be used.

• Type definition for parameters

In the previous version, the data type for a parameter symbol could be specified by writing it with a
colon after the symbol in the definition. This syntax has been dropped. Data type constraints for
parameter symbols must now be specified via attributes instead.

• Syntax for %include

In the previous version, include was not part of CMPL header, but a special command in its own
right. It was therefore written without %. Since the include functionality is now provided by CMPL
header, it must be written %include.

• Syntax for %data

If multiple symbols are specified, they must be separated by commas. If no filename is specified,
there must be at least one whitespace directly after the colon after %data. In the previous version,
there were other syntactical variants that are no longer supported.

• Syntax for CmplServer

In the previous version, the url of a CmplServer was defined by the command line option -cm-
plUrl. Now the option -url is used.

CMPL 2.1.0 - Manual 73

 2.4 Examples

 2.4.1 Selected decision problems

 2.4.1.1 The diet problem

The goal of the diet problem is to find the cheapest combination of foods that will satisfy all the daily nutri -

tional requirements of a person for a week.

The following data is given (example cf. Fourer/Gay/Kernigham 2003, p. 27ff.) :

food cost per

package

provision of daily vitamin requirements in percentages

A B1 B2 C

BEEF 3.19 60 20 10 15

CHK 2.59 8 2 20 520

FISH 2.29 8 10 15 10

HAM 2.89 40 40 35 10

MCH 1.89 15 35 15 15

MTL 1.99 70 30 15 15

SPG 1.99 25 50 25 15

TUR 2.49 60 20 15 10

The decision is to be made for one week. Therefore the combination of foods has to provide at least 700%

of daily vitamin requirements. To promote variety, the weekly food plan must contain between 2 and 10

packages of each food.

The mathematical model can be formulated as follows:

3.19⋅xBEEF +2.59⋅xCHK +2.29⋅x FISH +2.89⋅xHAM +1.89⋅x MCH+1.99⋅x MTL+1.99 xSPG+2.49⋅xTUR→min!
s . t .
60⋅x BEEF+8⋅xCHK+8⋅xFISH +40⋅xHAM +15⋅x MCH+70⋅x MTL+25 xSPG+60⋅xTUR≤700
20⋅x BEEF+0⋅xCHK +10⋅xFISH +40⋅xHAM +35⋅x MCH+30⋅x MTL+50 xSPG+20⋅xTUR≤700
10⋅x BEEF+20⋅xCHK+15⋅xFISH +35⋅xHAM +15⋅x MCH+15⋅xMTL+25 xSPG+15⋅xTUR≤700
15⋅x BEEF+20⋅xCHK +10⋅xFISH +10⋅x HAM+15⋅x MCH+15⋅x MTL+15 x SPG+10⋅xTUR≤700

x j∈{2 , 3 ,… ,10} ; j∈{BEEF ,CHK , DISH , HAM , MCH , MTL , SPG ,TUR}

The CMPL model diet.cmpl can be formulated as follows:

par:
NUTR := set("A","B1", "B2", "C");
FOOD := set("BEEF", "CHK", "FISH", "HAM", "MCH", "MTL", "SPG", "TUR");

#cost per package
costs[FOOD] := (3.19, 2.59, 2.29, 2.89, 1.89, 1.99, 1.99, 2.49);

CMPL 2.1.0 - Manual 74

#provision of the daily requirements for vitamins in percentages
vitamin[NUTR, FOOD] := ((60, 8, 8, 40, 15, 70, 25, 60) ,

 (20, 0, 10, 40, 35, 30, 50, 20) ,
 (10, 20, 15, 35, 15, 15, 25, 15),
 (15, 20, 10, 10, 15, 15, 15, 10)

);

#weekly vitamin requirements
vitMin[NUTR]:= (700,700,700,700);

var:
x[FOOD]: integer[2..10];

obj:
cost: costs^T * x -> min;

con:
minimum vitamin restriction
vit: vitamin * x >= vitMin;

An alternative formulation is based on the cmplData file diet-data.cdat that is formulated as follows:
%NUTR set < A B1 B2 C >

%FOOD set < BEEF CHK FISH HAM MCH MTL SPG TUR >

#cost per package

%costs[FOOD] < 3.19 2.59 2.29 2.89 1.89 1.99 1.99 2.49 >

#provision of the daily requirements for vitamins in percentages

%vitamin[NUTR,FOOD] < 60 8 8 40 15 70 25 60

20 0 10 40 35 30 50 20

10 20 15 35 15 15 25 15

15 20 10 10 15 15 15 10 >

#weekly vitamin requirements

%vitMin[NUTR] < 700 700 700 700 >

Assuming that the corresponding CMPL file diet-data.cmpl is in the same working directory the model

can be formulated as follows:

%data diet-data.cdat: FOOD set, NUTR set, costs[FOOD], vitamin[NUTR,FOOD], vit-
Min[NUTR]

var:
x[FOOD]: integer[2..10];

obj:
cost: costs^T * x -> min;

con:
minimum vitamin restriction
vit: vitamin * x >= vitMin;

Solving this CMPL model through using the command:

cmpl diet-data.cmpl

leads to the same solution as for the first formulation:

CMPL 2.1.0 - Manual 75

Problem diet-data.cmpl

Nr. of variables 8

Nr. of constraints 4

Objective name cost

Solver name HIGHS

Display variables (all)

Display constraints (all)

Objective status INTEGER OPTIMAL

Objective value 101.14 (min!)

Variables

Name Type Activity Lower bound Upper bound Marginal

x[BEEF] I 2 2 10 -

x[CHK] I 8 2 10 -

x[FISH] I 2 2 10 -

x[HAM] I 2 2 10 -

x[MCH] I 10 2 10 -

x[MTL] I 10 2 10 -

x[SPG] I 10 2 10 -

x[TUR] I 2 2 10 -

Constraints

Name Type Activity Lower bound Upper bound Marginal

vit[A] G 1500 700 inf -

vit[B1] G 1330 700 inf -

vit[B2] G 860 700 inf -

vit[C] G 700 700 inf -

 2.4.1.2 Production mix

This model calculates the production mix that maximizes profit subject to available resources. It will identify

the mix (number) of each product to produce and any remaining resource.

The example involves three products which are to be produced with two machines. The following data is

given:

P1 P2 P3 upper bounds [h]

upper bound of a product [units] 250 240 250

selling price per unit [€/unit] 500 600 450

direct costs per unit [€/unit] 425 520 400

profit contribution per unit [€/unit] 75 80 50

machine hours required per unit

machine 1 [h/unit] 8 15 12 1,000

machine 2 [h/unit] 15 10 8 1,000

The mathematical model can be formulated as follows:

CMPL 2.1.0 - Manual 76

75⋅x 180⋅x250⋅x3 max !
s.t.
8⋅x115⋅x212⋅x 3≤1,000
15⋅x 110⋅x28⋅x 3≤1,000

x 1∈{0,1 , ,250}
x 2∈{0,1 , ,240}
x 3∈{0,1 , ,250}

The CMPL model production-mix.cmpl is formulated as follows:

par:
#vectors for the prices and costs per unit of the three products
price := (500, 600, 450);
costs := (425, 520, 400);

#upper bound of the products
xMax := (250, 240, 250);

#calculation the vector of the profit contribution per unit
c := price - costs;

#machine hours required per unit
a := ((8, 15, 12), (15, 10, 8));

#upper bounds of the machines
b := (1000, 1000);

var:
x[defset(price)]: integer;

obj:
profit: c^T * x ->max;

con:
res: a * x <= b;
x <=xMax;

The model can be formulated alternatively by using the cmplData production-mix-data.cdat file.

%products set < 1..3 >

%machines set < 1..2 >

%price[products] <500 600 450 >

%costs[products] <425 520 400 >

#machine hours required per unit

%a[machines,products] < 8 15 12 15 10 8 >

#upper bounds of the machines

%b[machines] < 1000 1000 >

CMPL 2.1.0 - Manual 77

#lower and upper bound of the products

%xMax[products] < 250 240 250>

%xMin[products] < 45 45 45 >

#fixed setup costs

%FC[products] < 500 400 500>

The parameter arrays xMin and FC are not necessary for the given problem and therefore not specified

within the %data options in the following CMPL file production-mix-data.cdat:

%data : products set, machines set, price[products], costs[products], a[ma-
chines,products], b[machines], xMax[products]

par:
c := price-costs;

var:
x[defset(price)]: integer;

obj:
profit: c^T * x ->max;

con:
res: a * x <= b;
x <=xMax;

 The CMPL command

cmpl production-mix-data.cmpl

leads to the following Solution:

Problem production-mix-data.cmpl

Nr. of variables 3

Nr. of constraints 2

Objective name profit

Solver name HIGHS

Display variables (all)

Display constraints (all)

Objective status INTEGER OPTIMAL

Objective value 6395 (max!)

Variables

Name Type Activity Lower bound Upper bound Marginal

x[1] I 33 0 250 -

x[2] I 49 0 240 -

x[3] I 0 0 250 -

Constraints

Name Type Activity Lower bound Upper bound Marginal

res[1] L 999 -inf 1000 -

res[2] L 985 -inf 1000 -

CMPL 2.1.0 - Manual 78

 2.4.1.3 Production mix including thresholds and step-fixed costs

This model seeks the production mix that maximises profit subject to available resources. When a product is

produced, there are fixed set-up costs. There is also a threshold for each product. The quantity of a product

is zero or greater than the threshold. This is the behaviour of a semi-continuous(integer) variable.

The example involves three products which are to be produced with two machines. The following data is

given:

P1 P2 P3
upper

bounds [h]

production minimum of a product [units] 45 45 45

upper bound of a product [units] 250 240 250

selling price per unit [€/unit] 500 600 450

direct costs per unit [€/unit] 425 520 400

profit contribution per unit [€/unit] 75 80 50

set-up costs [€] 500 400 500

machine hours required per unit

machine 1 [h/unit] 8 15 12 1,000

machine 2 [h/unit] 15 10 8 1,000

The mathematical model can be formulated as follows:

75⋅x 180⋅x250⋅x3−500⋅y1−400⋅y2−500⋅y3  max !
s.t.
8⋅x115⋅x212⋅x 3≤1,000
15⋅x 110⋅x28⋅x 3≤1,000

45⋅y1≤ x1≤250⋅y1

45⋅y2≤ x2≤240⋅y2

45⋅y3≤x 3≤250⋅y3

x 1∈{0,1 , ,250}
x 2∈{0,1 , ,240}
x 3∈{0,1 , ,250}

y j ∈{0,1} ; j=113

Using the CmplData file production-mix-data.cdat the CMPL model production-mix-fc.cmpl is

formulated as follows:

%data production-mix-data.cdat
par:

c := price-costs;
var:

{j in products : x[j]: integer[0..xMax[j]]; }
y[products] : binary;

CMPL 2.1.0 - Manual 79

obj:
profit: c^T * x - FC^T * y ->max;

con:
res: a * x <= b;
bounds {j in products: xMin[j] * y[j] <= x[j] <= xMax[j] * y[j]; }

CMPL command:

cmpl production-mix-fc.cmpl

Solution:

Problem production-mix-fc.cmpl

Nr. of variables 6

Nr. of constraints 8

Objective name profit

Solver name HIGHS

Display variables (all)

Display constraints (all)

Objective status INTEGER OPTIMAL

Objective value 4880 (max!)

Variables

Name Type Activity Lower bound Upper bound Marginal

x[1] I 0 0 250 -

x[2] I 66 0 240 -

x[3] I 0 0 250 -

y[1] B 0 0 1 -

y[2] B 1 0 1 -

y[3] B 0 0 1 -

Constraints

Name Type Activity Lower bound Upper bound Marginal

res[1] L 990 -inf 1000 -

res[2] L 660 -inf 1000 -

bounds[1,1] L 0 -inf 0 -

bounds[1,2] G 0 0 inf -

bounds[2,1] L -21 -inf 0 -

bounds[2,2] G 174 0 inf -

bounds[3,1] L 0 -inf 0 -

bounds[3,2] G 0 0 inf -

 2.4.1.4 Production mix with user-defined functions for thresholds and step-

fixed costs

Since the formulations for step-fixed costs and semi-continuous variables can be used in several models, it

makes sense to specify the formulations in user-defined functions which can be included in a Cmpl model.

CMPL 2.1.0 - Manual 80

The following listings shows the formulation of step-fixed costs:

fixcosts := &{ @v = $arg[1], @f = $arg[2],@m = $arg[3]:
// variable, fixed costs, big M
{ f == 0: return 0; }

local var b := binary;
con v <= m * b;

 return f*b;
};

With the expression fixcosts := &{ … }, the code block &{ … } is assigned to the symbol fix-

costs. The user-defined function can be called under this name. Three code block symbols are assigned

the arguments of the function. The symbol v is assigned the variable for which step-fixed costs are incurred

if it is greater than zero. The second argument is the stored step-fixed cost that will be stored in f. The last

symbol m stands for a big-M value. If the step-fixed cost equal to zero then the function return the value

zero ({ f == 0: return 0; }). A local binary variable b is then defined. This variable is used for the

following constraint v <= m * b;. In the last step, the function returns f*b. Since this function is to be

be called within an objective function, the result of this function extends the corresponding objective func-

tion. Although the variable and the constraint have a local scope, they are contained in the entire matrix of

the LP.

A function for semi-continuous(integer) variables can be formulated as follows:

semicont := &{ @tp = $arg[1], @lb = $arg[2], @ub = $arg[3]:
// data type, threshold value, upper bound

local var v := tp[0..ub];
 con res := v = 0 || v >= lb;

return v;
};

The symbol semicont is assigned the user-defined function which can be called under this name. The ar-

guments are the type of the variable, the threshold for the variable and the upper bound. The local symbol

tp is used for the type, lb for the threshold and ub for the upper limit. A local variable v is defined with the

type tp, a lower bound of zero and the upper bound ub (local var v := tp[0..ub];). In the last

step, the function returns this variable (return v;). The behaviour that the variable v is either equal to

zero or lies in the interval between the threshold value lb and the upper bound ub is formulated as an al-

ternative constraint v = 0 || v >= lb.

Both functions mare saved in a file production-mix-lib.cmpl which is included in the Cmpl model

production-mix-fc-func.cmpl. In the first line, the CmplData file from the previous example was read

into the model. In the second line, the production-mix-lib.cmpl file is included, which contains the

two functions.

CMPL 2.1.0 - Manual 81

%data production-mix-data.cdat
%include production-mix-lib.cmpl
par:

c := price-costs;
bigM := max(xMax);

var:
{j in products :

x[j] : semicont(integer, xMin[j], xMax[j]) ;
}

obj:
profit: sum{ j in products : c[j] * x[j] - fixcosts(x[j], FC[j], bigM) }-

>max;
con:

res: a * x <= b;

The parameter section contains the calculation of the cost vector as result of a vector subtraction (c :=

price-costs;) and the parameter bigM which is equal to the maximum of all values in the vector xMax.

All elements of the vector of variables x are defined as semi-integer variables using the function semi-

cont(). The objective function is also defined using a sum-loop over all products, whereby the step-fixed

costs are included by calling the user-defined function fixcosts().

Running the problem using CMPL command:

cmpl production-mix-fc-func.cmpl

leads to the solution which is equal to the solution of the previous example:

Problem production-mix-fc-func.cmpl

Nr. of variables 12

Nr. of constraints 17

Objective name profit

Solver name HIGHS

Display variables (all)

Display constraints (all)

Objective status INTEGER OPTIMAL

Objective value 4880 (max!)

Variables

Name Type Activity Lower bound Upper bound Marginal

x[1] I 0 0 250 -

x[2] I 66 0 240 -

x[3] I 0 0 250 -

_c1 B 0 0 1 -

_c2 B 1 0 1 -

_c3 B 0 0 1 -

Constraints

Name Type Activity Lower bound Upper bound Marginal

line_4 G 184 0 inf -

line_5 G 0 0 inf -

line_6 G 4880 0 inf -

res[1] L 990 -inf 1000 -

res[2] L 660 -inf 1000 -

line_10 G 0 0 inf -

CMPL 2.1.0 - Manual 82

line_11 L 0 -inf 0 -

line_12 G 1e+10 45 inf -

line_14 G 1e+10 0 inf -

line_15 L -1e+10 -inf 0 -

line_16 G 66 45 inf -

line_18 G 0 0 inf -

line_19 L 0 -inf 0 -

line_20 G 1e+10 45 inf -

Unfortunately, the name of the variables and constraints constructed with the two user-defined functions are

generated by using default names (e.g. c1 and line_4). Therefore, it makes sense to generated more

meaningful names within the functions. Otherwise, a user may not be interested in seeing the generated

auxiliary variables and constraints. Hiding these elements can be done by defining names that start with two

underscores and are not shown in the solution by default.

The function for the step-fixed costs can be extended as follows:

fixcosts := &{ @v = $arg[1], @f = $arg[2],@m = $arg[3] :
// variable, fixed costs, big M
{ f == 0: return 0; }

local var b := binary;
b.$destNameTuple ::= ["__b", v.$destTuple];

 local con res := v <= m * b;
res.$destNameTuple ::= ["__b_ub", v.$destTuple];

 return f*b;
};

The definition of the variable b is followed by the definition of its name and the index in the matrix of the

entire LP. The attribute $destNameTuple of this variable is assigned the name "__b" and as index the

index of the variable v using its attribute $destTuple. A similar approach is used for the name and the in-

dex of the constraint res.

The extended function for the semi-continuous(integer) needs a fourth argument for the index of the vari-

able to be generated:

semicont := &{ @tp = $arg[1], @lb = $arg[2], @ub = $arg[3], @idx = $arg[4]:
// data type, threshold value, upper bound

local var v := tp[0..ub];
local var y := binary;

y.$destNameTuple ::= ["__y", idx];

local con res1:= y * lb <= v ;
local con res2:= v <= y * ub;

res1.$destNameTuple ::= ["__y_lb", idx];
res2.$destNameTuple ::= ["__y_ub", idx];

return v;
};

CMPL 2.1.0 - Manual 83

This argument is used for the definition of the name and index of the auxiliary variable y in the matrix of the

LP (y.$destNameTuple ::= ["__y", idx];). The the auxiliary constraints follow an alternative way,

where for both constraints the names and indices are defined in the same way as the constraints of the set-

fixed costs. Since the names of all auxiliary variables and constraints start with two underscores they are not

shown in the solution.

Problem production-mix-fc-func1.cmpl

Nr. of variables 9

Nr. of constraints 11

Objective name profit

Solver name HIGHS

Display variables (all)

Display constraints (all)

Objective status INTEGER OPTIMAL

Objective value 4880 (max!)

Variables

Name Type Activity Lower bound Upper bound Marginal

x[1] I 0 0 250 -

x[2] I 66 0 240 -

x[3] I 0 0 250 -

Constraints

Name Type Activity Lower bound Upper bound Marginal

res[1] L 990 -inf 1000 -

res[2] L 660 -inf 1000 -

If these variables and constraints shall be displayed, the header entry %display generatedElements is

to be used.

Problem production-mix-fc-func1.cmpl

Nr. of variables 9

Nr. of constraints 11

Objective name profit

Solver name HIGHS

Display variables (all,generatedElements)

Display constraints (all,generatedElements)

Objective status INTEGER OPTIMAL

Objective value 4880 (max!)

Variables

Name Type Activity Lower bound Upper bound Marginal

x[1] I 0 0 250 -

__y[1] B 0 0 1 -

x[2] I 66 0 240 -

__y[2] B 1 0 1 -

x[3] I 0 0 250 -

__y[3] B 0 0 1 -

__b[1] B 0 0 1 -

__b[2] B 1 0 1 -

__b[3] B 0 0 1 -

CMPL 2.1.0 - Manual 84

Constraints

Name Type Activity Lower bound Upper bound Marginal

__y_lb[1] L 0 -inf 0 -

__y_ub[1] G -21 0 inf -

__y_lb[2] L 174 -inf 0 -

__y_ub[2] G 0 0 inf -

__y_lb[3] L 0 -inf 0 -

__y_ub[3] G 0 0 inf -

__b_ub[1] G 184 0 inf -

__b_ub[2] G 0 0 inf -

__b_ub[3] G 4880 0 inf -

res[1] L 990 -inf 1000 -

res[2] L 660 -inf 1000 -

 2.4.1.5 The knapsack problem

Given a set of items with specified weights and values, the problem is to find a combination of items that fills

a knapsack (container, room, …) to maximize the value of the knapsack subject to its restricted capacity or

to minimize the weight of items in the knapsack subject to a predefined minimum value.

In this example there are 10 boxes, which can be sold on the market at a defined price.

box number price

[€/box]

weight

[pounds]

1 100 10

2 80 5

3 50 8

4 150 11

5 55 12

6 20 4

7 40 6

8 50 9

9 200 10

10 100 11

1. What is the optimal combination of boxes if you are seeking to maximize the total sales and are able to

carry a maximum of 60 pounds?

2. What is the optimal combination of boxes if you are seeking to minimize the weight of the transported

boxes bearing in mind that the minimum total sales must be at least €600?

CMPL 2.1.0 - Manual 85

Model 1: maximize the total sales

The mathematical model can be formulated as follows:

100⋅x180⋅x 250⋅x3150⋅x 455⋅x520⋅x640⋅x750⋅x 8200⋅x9100⋅x10 max !
s.t.
10⋅x15⋅x28⋅x311⋅x 412⋅x 54⋅x66⋅x 79⋅x810⋅x 911⋅x10≤60
x j∈{0,1} ; j=1110

The basic data is saved in the CMPL file knapsack-data.cdat:

%boxes set < 1..10 >

#weight of the boxes
%w[boxes] < 10 5 8 11 12 4 6 9 10 11 >

#price per box
%p[boxes] <100 80 50 150 55 20 40 50 200 100 >

#max capacity
%maxWeight <60>

#min sales
%minSales <600>

A simple CMPL model knapsack-max.cmpl can be formulated as follows:

%data knapsack-data.cdat

#show only activities unequal to zero in the solution

%display nonZeros

var:

x[boxes] : binary;

obj:

sales: p^T * x ->max;

con:

weight: w^T * x <= maxWeight;

CMPL command:

cmpl knapsack-max.cmpl

Solution:

Problem knapsack-max.cmpl

Nr. of variables 10

Nr. of constraints 1

Objective name sales

Solver name HIGHS

Display variables nonzero variables (all)

Display constraints nonzero constraints (all)

Objective status INTEGER OPTIMAL

Objective value 700 (max!)

CMPL 2.1.0 - Manual 86

Variables

Name Type Activity Lower bound Upper bound Marginal

x[1] B 1 0 1 -

x[2] B 1 0 1 -

x[3] B 1 0 1 -

x[4] B 1 0 1 -

x[6] B 1 0 1 -

x[9] B 1 0 1 -

x[10] B 1 0 1 -

Constraints

Name Type Activity Lower bound Upper bound Marginal

weight L 59 -inf 60 -

Model 2: minimize the weight

The mathematical model can be formulated as follows:

10⋅x15⋅x28⋅x311⋅x 412⋅x 54⋅x66⋅x 79⋅x810⋅x 911⋅x10 min !
s.t.
100⋅x180⋅x 250⋅x3150⋅x 455⋅x520⋅x640⋅x750⋅x 8200⋅x9100⋅x10≥600
x j∈{0,1} ; j=1110

A simple CMPL model knapsack-min-basic.cmpl can be formulated as follows:

%data knapsack-data.cdat

#show only activities unequal to zero in the solution

%display nonZeros

var:

x[boxes] : binary;

obj:

weight: w^T * x ->min;

con:

sales: p^T * x >= minSales;

CMPL command:

cmpl knapsack-min.cmpl

Solution:

Problem knapsack-min.cmpl

Nr. of variables 10

Nr. of constraints 1

Objective name weight

Solver name HIGHS

Display variables nonzero variables (all)

Display constraints nonzero constraints (all)

Objective status INTEGER OPTIMAL

Objective value 47 (min!)

CMPL 2.1.0 - Manual 87

Variables

Name Type Activity Lower bound Upper bound Marginal

x[1] B 1 0 1 -

x[2] B 1 0 1 -

x[4] B 1 0 1 -

x[9] B 1 0 1 -

x[10] B 1 0 1 -

Constraints

Name Type Activity Lower bound Upper bound Marginal

sales G 630 600 inf -

 2.4.1.6 The standard transport problem

A transport problem is a special kind of linear programming problem which seeks to minimize the total ship-

ping costs of transporting goods from several supply locations (origins or sources) to several demand loca-

tions (destinations).

The following example is taken from (Anderson et.al. 2011, p. 261ff). This problem involves the transporta-

tion of a product from three plants to four distribution centres. Foster Generators operates plants in Cleve-

land, Ohio; Bedford, Indiana; and York, Pennsylvania. The supplies are defined by the production capacities

over the next three-month planning period for one particular type of generator.

The company distributes its generators through four regional distribution centres located in Boston, Chicago,

St. Louis, and Lexington. It is to decide how much of its products should be shipped from each plant to each

distribution centre. The objective is to minimize the transportation costs.

CMPL 2.1.0 - Manual 88

Plants Centers

3
York

2
Bedford

1
Cleveland

1
Boston

3
St. Louis

2
Chicago

4
Lexington

5000

6000

2500

6000

4000

2000

1500

3

2

5

2
3

2

4

6 7

7

5

5

The problem can be formulated in the form of the general linear programme below

 ∑
i =1

m

∑
j=1

n

cij⋅xij → min!

 s.t.

 ∑
j =1

n

x ij=si ; i=1(1)m

 ∑
i =1

m

x ij=d j ; j=1 (1)n

 xij≥0 ; i=1(1)m , j=1(1)n

xij − number of units shipped from plant i to center j
cij − cost per unit of shipping from plant i to center j
si − supply in units at plant i
d j − demand in units at desitination j

The CMPL model transportation.cmpl can be formulated or by using an additional cmplData file

transportation.cdat as follows:

%plants set < 1..3 >

%centres set < 1..4 >

%s[plants] < 5000 6000 2500 >

%d[centres] < 6000 4000 2000 1500 >

%c[plants, centres] < 3 2 7 6

7 5 2 3

2 5 4 5 >

%data transportation.cdat

%display nonZeros

var:

x[plants,centers]: integer;

obj:

costs: sum{i in plants, j in centers : c[i,j] * x[i,j] } ->min;

con:

supplies {i in plants : sum{j in centers: x[i,j]} = s[i]; }

demands {j in centers : sum{i in plants : x[i,j]} = d[j]; }

CMPL command:

cmpl transportation.cmpl

CMPL 2.1.0 - Manual 89

Solution:

Problem transportation.cmpl

Nr. of variables 12

Nr. of constraints 7

Objective name costs

Solver name HIGHS

Display variables nonzero variables (all)

Display constraints nonzero constraints (all)

Objective status INTEGER OPTIMAL

Objective value 39500 (min!)

Variables

Name Type Activity Lower bound Upper bound Marginal

x[1,1] I 3500 0 inf -

x[1,2] I 1500 0 inf -

x[2,2] I 2500 0 inf -

x[2,3] I 2000 0 inf -

x[2,4] I 1500 0 inf -

x[3,1] I 2500 0 inf -

Constraints

Name Type Activity Lower bound Upper bound Marginal

supplies[1] E 5000 5000 5000 -

supplies[2] E 6000 6000 6000 -

supplies[3] E 2500 2500 2500 -

demands[1] E 6000 6000 6000 -

demands[2] E 4000 4000 4000 -

demands[3] E 2000 2000 2000 -

demands[4] E 1500 1500 1500 -

 2.4.1.7 Transportation problem using a 2-tuple set

In the case that not all of the connections are possible for technological or commercial reasons (e.g. as in

the picture below) then an alternative model to the model above has to be formulated. Additionally is as -

sumed that the total demand is greater than the supplies.

CMPL 2.1.0 - Manual 90

The mathematical model is based on the 2-tuple set routes that contains only the valid connections between

the plants and the centres.

∑
(i , j)∈routes

c ij⋅xij →min!

s . t .

∑
(k , j)∈routes

k=i

xkj=si ; i=1(1)m

∑
(i , l)∈routes

l= j

x il≤d j ; j=1(1)n

x ij≥0 ;(i , j)∈routes

Die sets and parameters are specified in transportation-tuple.cdat

%edges set[2] < 1 1 1 2 1 4

 2 2 2 3 2 4

 3 1 3 3 >

%plants set < 1 .. 3 >

%centers set < 1 .. 4 >

CMPL 2.1.0 - Manual 91

Plants Centers

3
York

2
Bedford

1
Cleveland

1
Boston

3
St. Louis

2
Chicago

4
Lexington

5000

6000

2500

6000

4000

2000

2500

3

2

5
2

3

2

4

6

%s[plants] < 5000 6000 2500 >

%d[centers] < 6000 4000 2000 2500 >

%c[edges] < 3 2 6 5 2 3 2 4 >

that is connected to the CMPL model transportation-tuple.cmpl:

%data : plants set, centers set, edges set[2], c[edges] , s[plants] , d[cen-

ters]

%display nonZeros

var:

 x[edges]: real;

obj:

 costs: sum{ [i,j] in edges : c[i,j]*x[i,j] } ->min;

con:

 supplies {i in plants : sum{j in edges *> [i,*] : x[i,j]} = s[i];}

 demands {j in centers: sum{i in edges *> [*,j] : x[i,j]} <= d[j];}

The two constraints use a set pattern matching to generate the 1-tuple sets used for the sum-loops. An al-

ternative formulation can used as follows:

supplies {i in plants : sum{j in centers, [i,j] in edges : x[i,j]} = s[i];}

demands {j in centers: sum{i in plants, [i,j] in edges: x[i,j]} <= d[j];}

In this case, the sum-loops iterate over the entire set of the centers or plants, but its is checked

whether the index-tuple [i,j] exists in the 2-tuple set edges.

Solution:

Problem transportation-tupel.cmpl

Nr. of variables 8

Nr. of constraints 7

Objective name costs

Solver name HIGHS

Display variables nonzero variables (all)

Display constraints nonzero constraints (all)

Objective status OPTIMAL

Objective value 36500 (min!)

Variables

Name Type Activity Lower bound Upper bound Marginal

x[1,1] C 2500 0 inf 0

x[1,2] C 2500 0 inf 0

x[2,2] C 1500 0 inf 0

x[2,3] C 2000 0 inf 0

x[2,4] C 2500 0 inf 0

x[3,1] C 2500 0 inf 0

CMPL 2.1.0 - Manual 92

Constraints

Name Type Activity Lower bound Upper bound Marginal

supplies[1] E 5000 5000 5000 3

supplies[2] E 6000 6000 6000 6

supplies[3] E 2500 2500 2500 2

demands[1] L 5000 -inf 6000 0

demands[2] L 4000 -inf 4000 -1

demands[3] L 2000 -inf 2000 -4

demands[4] L 2500 -inf 2500 -3

 2.4.1.8 Transhipment problem

Logistical networks (e.g. distribution networks) often contain so called transhipment nodes beside sources

and destination. A transhipment node has to assemble or divide the incoming shipments into the outgoing

shipments. That means the incoming quantity has to be equal to the outgoing quantity. A transhipment

model is intended to organise an optimal supply of a homogeneous good between a set of sources (origins,

suppliers), a set of transhipment nodes and a set of sinks (destinations, customers) in order to minimise the

total transportation cost (or distances, times, etc.).

In this example, a transport plan between three plants, two warehouses and four distribution centres is to

determined in order to minimise the total transport costs. The unit transport costs are shown in the picture

below as weights at the edges. The capacity of each possible road (edge) is restricted to 500 units due to

the vehicle pool.

The first step is to determine the data (records and parameters) of the problem in a CmplData file tran-

shipment.cdat. Please note that the transshipment nodes W1 and W2 have to be split (W1a, W1b,

W2a, W2b) due to their capacities and the fact that the min-cost flow model does not allow capacities for

nodes. Therefore, each transshipment node must be split into two, with a cost-free edge connecting the

two. The maximum flow on such an edge equals the capacity of the transhipment node. Consequently, the

CMPL 2.1.0 - Manual 93

definition of the 2-tuple set edges also contains these two auxiliary edges W1a to W1b and W2a to W2b in ad-

dition to the normal edges.

%nodes set < P1 P2 P3 W1a W2a W1b W2b D1 D2 D3 D4 >

%edges set[2] <
P1 W1a
P1 W2a
P2 W1a
P2 W2a
P3 W1a
P3 W2a
W1a W1b
W1b D1
W1b D2
W1b D3
W1b D4
W2a W2b
W2b D1
W2b D2
W2b D3
W2b D4
>

#supplies of the nodes
%s[nodes] = 0 indices <
P1 400
P2 500
P3 600
>

#demand of the nodes
%d[nodes] = 0 indices <
D1 350
D2 450
D3 500
D4 200
>

#unit transport costs per edge
%c[edges] = 0 indices <
P1 W1a 50
P1 W2a 60
P2 W1a 40
P2 W2a 50
P3 W1a 70
P3 W2a 30
W1b D1 20
W1b D2 10
W1b D3 30
W1b D4 40
W2b D1 70
W2b D2 30
W2b D3 30
W2b D4 50
>

#max flow on the edges
%maxCap[edges] = 500 indices <
W1a W1b 800.0
W2a W2b 750.0
>

The supply vector s contains a supply greater than zero only for the sources. Therefore, the definition of this

vector starts with a default value equal to zero (%s[nodes] =0). All other values have to be indicated by

their index (keyword indices). Each entry starts with the index of the node followed by its supply. All

other arrays are specified in this way. In particular, the default value of the vector maxCap for the maximum

flow of all edges is equal to 500, which corresponds to the capacity of the vehicle used. Only the edges

CMPL 2.1.0 - Manual 94

between the split transshipment nodes have a different upper bound due to the capacities of the ware-

houses.

This CmplData file have to be read into the Cmpl file transhipment.cmpl by using the Cmpl header entry

%data in the first line of the following listing:

%data : nodes set, s[nodes], d[nodes], edges set[2], c[edges], maxCap[edges]

var:
 { [i,j] in edges: x[i,j] : real[0..maxCap[i, j]]; }

obj:
 costs: sum { [i,j] in edges: c[i,j] * x[i,j] } ->min;

con:
 { i in nodes :
 netFlow[i]: sum{ j in edges *> [i,*] : x[i,j] } -
 sum{ j in edges *> [*,i] : x[j,i] } = s[i] - d[i];
 }

The variables of the model are organised in an array x which is defined by using the 2-tuple set edges.

They are all non-negative continuous variables with an upper bound defined in the vector maxCap. These

variables are the flows of the uniform good on the edges. An objective function costs to be minimised is

defined in the objective section as the sum over all edges of the product of the unit transport costs c[i,j]

and the flow x[i,j] on the edge. For all nodes, a flow balance constraint netFlow[i] has to be created

in which the difference of the outgoing and incoming flow on the left-hand side must be equal to the differ-

ence of the supply s[i] and the demand d[i] of this node on the right-hand side.

After running this problem, the following solution can be found.

Problem transhipment.cmpl

Nr. of variables 16

Nr. of constraints 11

Objective name costs

Solver name HIGHS

Display variables (all)

Display constraints (all)

Objective status OPTIMAL

Objective value 100500 (min!)

Variables

Name Type Activity Lower bound Upper bound Marginal

x[P1,W1a] C 400 0 500 0

x[P1,W2a] C 0 0 500 0

x[P2,W1a] C 300 0 500 0

x[P2,W2a] C 200 0 500 0

x[P3,W1a] C 100 0 500 0

x[P3,W2a] C 500 0 500 -50

x[W1a,W1b] C 800 0 800 -20

x[W2a,W2b] C 700 0 750 0

x[W1b,D1] C 350 0 500 0

x[W1b,D2] C 450 0 500 0

x[W1b,D3] C 0 0 500 0

x[W1b,D4] C 0 0 500 0

x[W2b,D1] C 0 0 500 40

x[W2b,D2] C 0 0 500 10

CMPL 2.1.0 - Manual 95

x[W2b,D3] C 500 0 500 -10

x[W2b,D4] C 200 0 500 0

Constraints

Name Type Activity Lower bound Upper bound Marginal

netFlow[P1] E 400 400 400 60

netFlow[P2] E 500 500 500 50

netFlow[P3] E 600 600 600 80

netFlow[W1a] E 0 0 0 10

netFlow[W2a] E 0 0 0 0

netFlow[W1b] E 0 0 0 -10

netFlow[W2b] E 0 0 0 0

netFlow[D1] E -350 -350 -350 -30

netFlow[D2] E -450 -450 -450 -20

netFlow[D3] E -500 -500 -500 -40

netFlow[D4] E -200 -200 -200 -50

 2.4.1.9 Transhipment problem using Excel via CmplXlsData

In this section the previous example is solved again but the data is to be read from an Excel sheet and the

solution is to be written into it. This can be done by Cmpl's CmplXlsData interface. In the first step, a Cm-

plXlsData file transhipment1.xdat is to be created instead an CmplData file as in the previous section.

This is related to an Excel file transhipment.xlsx containing the sheet transhipment.

The CmplXlsData file starts in the source section with the file transhipment.xlsx and the sheet

transhipment from which the data is to be read and the results written.

@source
%file < transhipment.xlsx >
%sheet < transhipment>

@input

%edges set[2] < F3:G18 >
%nodes set < A3:A13 >

CMPL 2.1.0 - Manual 96

%c[edges] < H3:H18 >
%d[nodes] < C3:C13 >
%s[nodes] < B3:B13 >

%minCap[edges] < I3:I18 >
%maxCap[edges] < J3:J18 >

@output
%x[edges].activity < K3:K18 >
%objValue < B15 >

The definition of the sets and the parameter arrays in the input section are similar to the corresponding

definitions in the CmplData file in the previous section. The only difference is that the data cannot be spe -

cified within the angle brackets. In CmplXlsData the cell ranges have to be defined embedded in angle

brackets. The values of the set edges, for example, are stored in the cells F3:G18. The output section is in-

tended to specify the result elements to be written to the specified Excel sheet. Here, the activities of the

flow variables x have to be written into the cells K3:K18. In addition, the value of the objective function after

optimisation is to be found in cell B15.

The only difference to the previous Cmpl model is the first line. Instead of %data the entry %xlsdata is to be

used.

%xlsdata : nodes set, s[nodes], d[nodes], edges set[2], c[edges], maxCap[edges]

The results can be found after the optimisation in the cells specified in the CmplXlsData file. It is the same

solution as in the previous section, but now available in Excel (on Windows or macOS).

 2.4.1.10 Assignment problem

The following simple assignment problem is to be solved. A dispatcher has to plan the express transports of

a homogeneous good starting from the three stations (S1-S3) to the four customers (D1-D4) for the next

day in order to minimise the total transportation times.

CMPL 2.1.0 - Manual 97

Transportation times [h]

D1 D2 D3 D4

S1 12 25 2 -

S2 20 - 12 -

S3 30 6 10 5

Which station should supply which customer in order to minimise the transportation time?

There are two problems. An assignment problem usually contains two groups of strong SOS1 constraints. A

station must serve exactly one customer aand a customer should be served by exactly one station. Since

there are more customers then stations, only three of the customers can be served. Therefore, a strong

SOS1 must be formulated for each station and a week SOS1 for each of the customers. This means that a

customer can be served by a maximum of one station. The second problem is that three of the possible as-

signments are not allowed and are therefore marked with a hyphen in the matrix. This can be done by for-

mulating a set of allowed combinations via a 2-tuple set or by a Big M approach, i.e. very high assignment

costs for the forbidden combinations.

Die sets and parameters are specified in assignment.cdat, where the assignment costs for the forbidden

combinations are equal to 1000.

%N2 set < D1 D2 D3 D4 >

%N1 set < S1 S2 S3 >

%c[N1,N2] <

12 25 2 1000

20 1000 12 1000

30 6 10 5 >

The CMPL model assignment.cmpl can be formulated as follows:

%data : N1 set, N2 set, c[N1,N2]
%display nonZeros

var:
x[N1,N2]: real[0..1];

obj:
sum{ i in N1, j in N2: c[i,j]*x[i,j] } -> min ;

con:
sos_N1_ { i in N1: sum{ j in N2: x[i,j] } = 1; }
sos_N2_ { j in N2: sum{ i in N1: x[i,j] } <= 1; }

The CmplData file was read in with %data in the first line. Since the Big M values are used for the assig -

ment costs for the forbidden combinations, the variables are defined over all combinations from the set of

wards N1 and the set of customers N2. The obj section defines that the total assignment costs must be min-

imised over all combinations N1xN2. The set of constraints named sos_N1_ defines the strong SOS1 for the

stations, while the constraints sos_N2_ define the weak SOS1 for the customers.

CMPL 2.1.0 - Manual 98

After running this problem, the following solution can be found.

Problem assignment.cmpl
Nr. of variables 12
Nr. of constraints 7
Objective name line_1
Solver name HIGHS
Display variables nonzero variables (all)
Display constraints nonzero constraints (all)

Objective status OPTIMAL
Objective value 27 (min!)

Variables
Name Type Activity Lower bound Upper bound Marginal

x[S1,D3] C 1 0 1 0
x[S2,D1] C 1 0 1 0
x[S3,D4] C 1 0 1 0

Constraints
Name Type Activity Lower bound Upper bound Marginal

sos_N1_[S1] E 1 1 1 10
sos_N1_[S2] E 1 1 1 20
sos_N1_[S3] E 1 1 1 5
sos_N2_[D1] L 1 -inf 1 0
sos_N2_[D3] L 1 -inf 1 -8
sos_N2_[D4] L 1 -inf 1 0

Station S1 serves Customer D3, S2 takes over D1 and customer D4 is served by station S3. All constraints

are satisfied.

Since Cplex, Gurobi, Scip and Cbc are able to use SOS1 and SOS2 directly, CMPL automatically generates

native SOS when one of these solvers is selected.

The CMPL model assignment1.cmpl is silimar to the model above, but uses CMPL's predefined SOS1

class.

%data assignment.cdat : N1 set, N2 set, c[N1,N2]
%display nonZeros

%solver scip

var:
x[N1,N2]: real[0..1];

obj:
sum{ i in N1, j in N2: c[i,j]*x[i,j] } -> min ;

con:
sos_N1_ { i in N1: sum{ j in N2: x[i,j] } = 1; }

par:
{ j in N2:

s[j] := sos.sos1().name("sos_N1_");
s[j].add(x[,j]);

}

Instead of the previous constraints sos_N1_, the class sos1() is now used within the last par section. For

each customer i in N2, a SOS1 object is created and assigned to the parameter s[j]. Then the column

for this customer j of the matrix of assignment variables x is added to this SOS1 object.

CMPL 2.1.0 - Manual 99

In this example, Scip is used (%solver scip). Since it supports SOS directly, running this problem leads to

the same solution as before, but with only 3 constraints instead of 7 in the previous solution.

Problem assignment1.cmpl
Nr. of variables 12
Nr. of constraints 3
Objective name line_1
Solver name SCIP
Display variables nonzero variables (all)
Display constraints nonzero constraints (all)

Objective status optimal solution found
Objective value 27 (min!)

Variables
Name Type Activity Lower bound Upper bound Marginal

x[S1,D3] C 1 0 1 -
x[S2,D1] C 1 0 1 -
x[S3,D4] C 1 0 1 -

Constraints
Name Type Activity Lower bound Upper bound Marginal

sos_N1_[S1] E 1 1 1 -
sos_N1_[S2] E 1 1 1 -
sos_N1_[S3] E 1 1 1 -

 2.4.1.11 Quadratic assignment problem

Assignment problems are special types of linear programming problems which assign assignees to tasks or

locations. The goal of this quadratic assignment problem is to find the cheapest assignments of n machines

to n locations. The transport costs are influenced by

• the distance d jkbetween location j and location k and

• the quantity t hi between machine h and machine i, which is to be transported.

The assignment of a machine h to a location j can be formulated with the Boolean variables

xhj={1 , if machineh is assigned to location j
0 , if not }

The general model can be formulated as follows:

∑
h=1

n

∑
i=1 i≠h

n

∑
j=1

n

∑
k=1 k≠ j

n

thi ⋅d jk ⋅ xhj ⋅ x ik →min!

s . t .

∑
j=1

n

xhj=1 ;h=1 (1)n

∑
h=1

n

xhj=1 ; j=1 (1) n

xhj∈ {0,1 }; h=1 (1) n, j=1 (1)n

Because of the product xhj ⋅ x ikin the objective function the model is quadratic programming problem (QP). If

the solver called does not support QP (CBC, GLPK), then the products of these variables are equivalently

CMPL 2.1.0 - Manual 100

transformation into a set of inequations by CMPL. If the solver supports quadratic optimisation (Cplex, Gur-

obi, Scip), then the linearisation is switched off automatically and the QP algorithm is used.

Consider the following case: There are 5 machines and 5 locations in the given factory. The quantities of

goods which are to be transported between the machines are indicated in the figure below.

As shown in the picture below the machines are not fully connected. Therefore it makes sense to formulate

the objective function with a sum over a 2-tuple set with the name edges for the valid combinations

between the machines.

∑
(h, i)∈ edges

n

∑
j=1

n

∑
k=1 k ≠ j

n

t hi ⋅d jk ⋅ xhj ⋅ x ik →min!

The distances between the locations are given in the following table:

from/to 1 2 3 4 5

1 M 1 2 3 4

2 2 M 1 2 3

3 3 1 M 1 2

4 2 3 1 M 1

5 5 3 2 1 M

The CMPL model quadratic-assignment.cmpl can be formulated as follows:

%display nonZeros

par:
n:=5;
d[,]:= ((0, 1, 2, 3, 4),

 (2, 0, 1, 2, 3),
 (3, 1, 0, 1, 2),
 (2, 3, 1, 0, 1),
 (5, 3, 1, 1, 0));

edges := set ([1,2] , [1,3], [1,5], [2,3] , [3,4] , [3,5] , [4,5]);
t[edges] := (10,3,20,15,5,20,35);

var:

x[1..n,1..n]: binary;

obj:
costs: sum{ [h,i] in edges, j in 1..n, k in 1..n , k<>j:

t[h,i]*d[j,k]*x[h,j]*x[i,k] } →min;

CMPL 2.1.0 - Manual 101

con:
location { h in 1..n: sum{ j in 1..n: x[h,j] } = 1; }
machine { j in 1..n: sum{ h in 1..n: x[h,j] } = 1; }

If this problem CMPL was run with HiGHS

Cmpl quadratic-assignment.cmpl

then the following solution are found.

Problem quadratic-assignment.cmpl

Nr. of variables 165

Nr. of constraints 430

Objective name costs

Solver name HIGHS

Display variables nonzero variables (all)

Display constraints nonzero constraints (all)

Objective status INTEGER OPTIMAL

Objective value 134 (min!)

Variables

Name Type Activity Lower bound Upper bound Marginal

x[1,4] B 1 0 1 -

x[2,1] B 1 0 1 -

x[3,2] B 1 0 1 -

x[4,5] B 1 0 1 -

x[5,3] B 1 0 1 -

Constraints

Name Type Activity Lower bound Upper bound Marginal

location[1] E 1 1 1 -

location[2] E 1 1 1 -

location[3] E 1 1 1 -

location[4] E 1 1 1 -

location[5] E 1 1 1 -

machine[1] E 1 1 1 -

machine[2] E 1 1 1 -

machine[3] E 1 1 1 -

machine[4] E 1 1 1 -

machine[5] E 1 1 1 -

The optimal assignments of machines to locations are given in the table below:

locations

1 2 3 4 5

m
ac

hi
ne

s

1 x

2 x

3 x

4 x

5 x

CMPL 2.1.0 - Manual 102

The problem size is 430 constraints and 165 variables including all auxiliary variables and constraints which

are not shown in the solution by default.

If CMPL is run with Scip or Cplex

%solver scip

then a problem with only 10 constraints and 25 variables are generated and the same solution is found

much faster:

Problem quadratic-assignment.cmpl

Nr. of variables 25

Nr. of constraints 10

Objective name costs

Solver name SCIP

Display variables nonzero variables (all)

Display constraints nonzero constraints (all)

Objective status optimal solution found

Objective value 134 (min!)

Variables

Name Type Activity Lower bound Upper bound Marginal

x[1,4] B 1 0 1 -

x[2,1] B 1 0 1 -

x[3,2] B 1 0 1 -

x[4,5] B 1 0 1 -

x[5,3] B 1 0 1 -

Constraints

Name Type Activity Lower bound Upper bound Marginal

location[1] E 1 1 1 -

location[2] E 1 1 1 -

location[3] E 1 1 1 -

location[4] E 1 1 1 -

location[5] E 1 1 1 -

machine[1] E 1 1 1 -

machine[2] E 1 1 1 -

machine[3] E 1 1 1 -

machine[4] E 1 1 1 -

machine[5] E 1 1 1 -

 2.4.1.12 Quadratic assignment problem using the solutionPool option

It is for several reasons interesting to catch the feasible integer solutions found during a linear MIP (QP) op-

timisation. Gurobi and Cplex are able to generate and store multiple solutions for such a problem. With the

display option solutionPool these feasible integer solutions can be shown in the solution report. It is re-

commended to control the behaviour of the solution pool by setting the particular Gurobi or Cplex solver op-

tions.

If the CMPL model for quadratic assignment problem above is extended by the following CMPL header

entries, then all feasible integer solutions found by Cplex are shown in the solution. The option %display

ignoreCons is intended to hide the constraints from the solution.

CMPL 2.1.0 - Manual 103

%solver cplex

%display solutionPool

%display ignoreCons

Solution:

Problem quadratic-assignment.cmpl
Nr. of variables 25
Nr. of constraints 10
Objective name costs
Nr. of solutions 5
Solver name CPLEX
Display variables nonzero variables (all)
Display constraints nonzero constraints (all)

Solution nr. 1
Objective status integer optimal solution
Objective value 134 (min!)

Variables
Name Type Activity Lower bound Upper bound Marginal

x[1,4] B 1 0 1 -
x[2,1] B 1 0 1 -
x[3,2] B 1 0 1 -
x[4,5] B 1 0 1 -
x[5,3] B 1 0 1 -

Constraints
Name Type Activity Lower bound Upper bound Marginal

location[1] E 1 1 1 -
location[2] E 1 1 1 -
location[3] E 1 1 1 -
location[4] E 1 1 1 -
location[5] E 1 1 1 -
machine[1] E 1 1 1 -
machine[2] E 1 1 1 -
machine[3] E 1 1 1 -
machine[4] E 1 1 1 -
machine[5] E 1 1 1 -

Solution nr. 2
Objective status integer feasible solution
Objective value 134 (min!)

Variables
Name Type Activity Lower bound Upper bound Marginal

x[1,4] B 1 0 1 -
x[2,1] B 1 0 1 -
x[3,2] B 1 0 1 -
x[4,5] B 1 0 1 -
x[5,3] B 1 0 1 -

Constraints
Name Type Activity Lower bound Upper bound Marginal

location[1] E 1 1 1 -
location[2] E 1 1 1 -
location[3] E 1 1 1 -
location[4] E 1 1 1 -
location[5] E 1 1 1 -
machine[1] E 1 1 1 -
machine[2] E 1 1 1 -
machine[3] E 1 1 1 -
machine[4] E 1 1 1 -
machine[5] E 1 1 1 -

Solution nr. 3
Objective status integer feasible solution
Objective value 171 (min!)

Variables
Name Type Activity Lower bound Upper bound Marginal

CMPL 2.1.0 - Manual 104

x[1,3] B 1 0 1 -
x[2,4] B 1 0 1 -
x[3,5] B 1 0 1 -
x[4,1] B 1 0 1 -
x[5,2] B 1 0 1 -

Constraints
Name Type Activity Lower bound Upper bound Marginal

location[1] E 1 1 1 -
location[2] E 1 1 1 -
location[3] E 1 1 1 -
location[4] E 1 1 1 -
location[5] E 1 1 1 -
machine[1] E 1 1 1 -
machine[2] E 1 1 1 -
machine[3] E 1 1 1 -
machine[4] E 1 1 1 -
machine[5] E 1 1 1 -

Solution nr. 4
Objective status integer feasible solution
Objective value 163 (min!)

Variables
Name Type Activity Lower bound Upper bound Marginal

x[1,3] B 1 0 1 -
x[2,5] B 1 0 1 -
x[3,4] B 1 0 1 -
x[4,1] B 1 0 1 -
x[5,2] B 1 0 1 -

Constraints
Name Type Activity Lower bound Upper bound Marginal

location[1] E 1 1 1 -
location[2] E 1 1 1 -
location[3] E 1 1 1 -
location[4] E 1 1 1 -
location[5] E 1 1 1 -
machine[1] E 1 1 1 -
machine[2] E 1 1 1 -
machine[3] E 1 1 1 -
machine[4] E 1 1 1 -
machine[5] E 1 1 1 -

Solution nr. 5
Objective status integer feasible solution
Objective value 191 (min!)

Variables
Name Type Activity Lower bound Upper bound Marginal

x[1,1] B 1 0 1 -
x[2,2] B 1 0 1 -
x[3,3] B 1 0 1 -
x[4,4] B 1 0 1 -
x[5,5] B 1 0 1 -

Constraints
Name Type Activity Lower bound Upper bound Marginal

location[1] E 1 1 1 -
location[2] E 1 1 1 -
location[3] E 1 1 1 -
location[4] E 1 1 1 -
location[5] E 1 1 1 -
machine[1] E 1 1 1 -
machine[2] E 1 1 1 -
machine[3] E 1 1 1 -
machine[4] E 1 1 1 -
machine[5] E 1 1 1 -

CMPL 2.1.0 - Manual 105

 2.4.1.13 Generic travelling salesman problem

The asymmetric travelling salesman problem is well known and often described. In the following CMPL

model the (x,y) coordinates of the cities are defined by random numbers and the distances are calculated

by the Euclidian distance of the (x,y) coordinates and disturbed by smaller random numbers to generated

an asymmetric distance matrix. To reproduce the solution, a rand seed is set. The CMPL model tsp.cmpl

can be formulated as follows:

%display nonZeros

par:
seed:=srand(100);
M:=10000;

nrOfCities:=10;
cities:=1..nrOfCities;

{i in cities:
 xp[i]:=rand(100);
 yp[i]:=rand(100);

}

{i in cities, j in cities:
 {i==j:

dist[i,j]:=M; |
 default:

dist[i,j]:= sqrt((xp[i]-xp[j])^2 + (yp[i]-yp[j])^2);
dist[j,i]:= dist[i,j]+rand(10)-rand(10);

 }
}

var:
x[cities,cities]: binary;
u[cities]: real[1..];

obj:
sum{i in cities, j in cities: dist[i,j]* x[i,j]} ->min;

con:
in_edges_ {j in cities: sum{i in cities: x[i,j]}=1; }
out_edges_ {i in cities: sum{j in cities: x[i,j]}=1; }

{i in 2..nrOfCities, j in 2..nrOfCities, i<>j:
subTourCon[i,j]: u[i] - u[j] + nrOfCities * x[i,j] <= nrOfCities-1;

}

CMPL command:

cmpl tsp.cmpl

Solution:

Problem tsp.cmpl
Nr. of variables 109
Nr. of constraints 92
Objective name line_1
Solver name HIGHS
Display variables nonzero variables (all)
Display constraints nonzero constraints (all)

CMPL 2.1.0 - Manual 106

Objective status INTEGER OPTIMAL
Objective value 321.319 (min!)

Variables
Name Type Activity Lower bound Upper bound Marginal

u[2] C 9 1 inf -
u[3] C 3 1 inf -
u[4] C 1 1 inf -
u[5] C 6 1 inf -
u[6] C 4 1 inf -
u[7] C 8 1 inf -
u[8] C 7 1 inf -
u[9] C 5 1 inf -
u[10] C 2 1 inf -
x[1,4] B 1 0 1 -
x[2,1] B 1 0 1 -
x[3,6] B 1 0 1 -
x[4,10] B 1 0 1 -
x[5,8] B 1 0 1 -
x[6,9] B 1 0 1 -
x[7,2] B 1 0 1 -
x[8,7] B 1 0 1 -
x[9,5] B 1 0 1 -
x[10,3] B 1 0 1 -

Constraints
Name Type Activity Lower bound Upper bound Marginal

in_edges_[1] E 1 1 1 -
in_edges_[2] E 1 1 1 -
in_edges_[3] E 1 1 1 -
in_edges_[4] E 1 1 1 -
in_edges_[5] E 1 1 1 -
in_edges_[6] E 1 1 1 -
in_edges_[7] E 1 1 1 -
in_edges_[8] E 1 1 1 -
in_edges_[9] E 1 1 1 -
in_edges_[10] E 1 1 1 -
out_edges_[1] E 1 1 1 -
out_edges_[2] E 1 1 1 -
out_edges_[3] E 1 1 1 -
out_edges_[4] E 1 1 1 -
out_edges_[5] E 1 1 1 -
out_edges_[6] E 1 1 1 -
out_edges_[7] E 1 1 1 -
out_edges_[8] E 1 1 1 -
out_edges_[9] E 1 1 1 -
out_edges_[10] E 1 1 1 -
subTourCon[2,3] L 6 -inf 9 -
subTourCon[2,4] L 8 -inf 9 -
subTourCon[2,5] L 3 -inf 9 -
subTourCon[2,6] L 5 -inf 9 -
subTourCon[2,7] L 1 -inf 9 -
subTourCon[2,8] L 2 -inf 9 -
subTourCon[2,9] L 4 -inf 9 -
subTourCon[2,10] L 7 -inf 9 -
subTourCon[3,2] L -6 -inf 9 -
subTourCon[3,4] L 2 -inf 9 -
subTourCon[3,5] L -3 -inf 9 -
subTourCon[3,6] L 9 -inf 9 -
subTourCon[3,7] L -5 -inf 9 -
subTourCon[3,8] L -4 -inf 9 -
subTourCon[3,9] L -2 -inf 9 -
subTourCon[3,10] L 1 -inf 9 -
subTourCon[4,2] L -8 -inf 9 -
subTourCon[4,3] L -2 -inf 9 -
subTourCon[4,5] L -5 -inf 9 -
subTourCon[4,6] L -3 -inf 9 -
subTourCon[4,7] L -7 -inf 9 -
subTourCon[4,8] L -6 -inf 9 -
subTourCon[4,9] L -4 -inf 9 -
subTourCon[4,10] L 9 -inf 9 -
subTourCon[5,2] L -3 -inf 9 -
subTourCon[5,3] L 3 -inf 9 -
subTourCon[5,4] L 5 -inf 9 -
subTourCon[5,6] L 2 -inf 9 -
subTourCon[5,7] L -2 -inf 9 -
subTourCon[5,8] L 9 -inf 9 -
subTourCon[5,9] L 1 -inf 9 -
subTourCon[5,10] L 4 -inf 9 -
subTourCon[6,2] L -5 -inf 9 -
subTourCon[6,3] L 1 -inf 9 -
subTourCon[6,4] L 3 -inf 9 -

CMPL 2.1.0 - Manual 107

subTourCon[6,5] L -2 -inf 9 -
subTourCon[6,7] L -4 -inf 9 -
subTourCon[6,8] L -3 -inf 9 -
subTourCon[6,9] L 9 -inf 9 -
subTourCon[6,10] L 2 -inf 9 -
subTourCon[7,2] L 9 -inf 9 -
subTourCon[7,3] L 5 -inf 9 -
subTourCon[7,4] L 7 -inf 9 -
subTourCon[7,5] L 2 -inf 9 -
subTourCon[7,6] L 4 -inf 9 -
subTourCon[7,8] L 1 -inf 9 -
subTourCon[7,9] L 3 -inf 9 -
subTourCon[7,10] L 6 -inf 9 -
subTourCon[8,2] L -2 -inf 9 -
subTourCon[8,3] L 4 -inf 9 -
subTourCon[8,4] L 6 -inf 9 -
subTourCon[8,5] L 1 -inf 9 -
subTourCon[8,6] L 3 -inf 9 -
subTourCon[8,7] L 9 -inf 9 -
subTourCon[8,9] L 2 -inf 9 -
subTourCon[8,10] L 5 -inf 9 -
subTourCon[9,2] L -4 -inf 9 -
subTourCon[9,3] L 2 -inf 9 -
subTourCon[9,4] L 4 -inf 9 -
subTourCon[9,5] L 9 -inf 9 -
subTourCon[9,6] L 1 -inf 9 -
subTourCon[9,7] L -3 -inf 9 -
subTourCon[9,8] L -2 -inf 9 -
subTourCon[9,10] L 3 -inf 9 -
subTourCon[10,2] L -7 -inf 9 -
subTourCon[10,3] L 9 -inf 9 -
subTourCon[10,4] L 1 -inf 9 -
subTourCon[10,5] L -4 -inf 9 -
subTourCon[10,6] L -2 -inf 9 -
subTourCon[10,7] L -6 -inf 9 -
subTourCon[10,8] L -5 -inf 9 -
subTourCon[10,9] L -3 -inf 9 -

By analysing the position variables u and knowing that the start city is node 1, the following optimal tour is
found:
1→4→10→3→6→9→5→8→7→2→1

 2.4.2 Other selected examples

This section illustrates how CMPL can be used as simple solver or heuristic.

 2.4.2.1 Solving the knapsack problem

CMPL can be used as a heuristic solver for knapsack problems.

The idea of the following models is to evaluate each item using the relation between the value and weight

per item. The knapsack will be filled with the items sorted in descending order until the capacity limit or the

minimum value is reached. Using the data from the examples in section 2.4.1.5 a CMPL model to maximize

the total sales relative to capacity can be formulated as follows.

 Model 1: maximize the total sales knapsack-max-heuristic.cmpl

%include knapsack-data.cmpl

#calculating the relative value of each box
{j in boxes: val[j]:= p[j]/w[j]; }

sumSales:=0;
sumWeight:=0;
#initial solution

CMPL 2.1.0 - Manual 108

x[]:=(0,0,0,0,0,0,0,0,0,0);

{ i in boxes:
maxVal:=max(val[]);
{j in boxes:

{ maxVal=val[j] :
{ sumWeight+w[j] <= maxWeight:

x[j]:=1;
sumSales:=sumSales + p[j];
sumWeight:=sumWeight + w[j];

}
val[j]:=0;
break j;

}
}

}

echo("Solution found");
echo("Optimal total sales: ", sumSales);
echo("Total weight : " ,sumWeight);
{j in boxes: echo("x_"+ j + ": " + x[j]); }

Solution:

Solution found
Optimal total sales: 690
Total weight : 57
x_1: 1
x_2: 1
x_3: 0
x_4: 1
x_5: 0
x_6: 1
x_7: 1
x_8: 0
x_9: 1
x_10: 1

This solution is of course worse than the optimal solution in section 2.4.1.5 , but it is a feasible solution.

Model 2: minimize the total weight knapsack-min-heuristic.cmpl

%include knapsack-data.cmpl

#calculating the relative value of each box
{j in boxes: val[j]:= w[j]/p[j]; }

M:=10000;
sumSales:=0;
sumWeight:=0;
#initial solution
x[]:=(0,0,0,0,0,0,0,0,0,0);
{sumSales < minSales:

maxVal:=min(val[]);
{j in boxes:

{ maxVal=val[j] :
{ sumSales < minSales:

x[j]:=1;
sumSales:=sumSales + p[j];
sumWeight:=sumWeight + w[j];

CMPL 2.1.0 - Manual 109

}

val[j]:=M;
break j;

}
}
repeat;

}
echo("Solution found");
echo("Optimal total weight : " + sumWeight);
echo("Total sales: "+ sumSales);
{j in boxes: echo("x_"+ j + ": " + x[j]); }

Solution:

Solution found
Optimal total weight : 47
Total sales: 630
x_1: 1
x_2: 1
x_3: 0
x_4: 1
x_5: 0
x_6: 0
x_7: 0
x_8: 0
x_9: 1
x_10: 1

This solution is identical to the optimal solution in section 2.4.1.5 .

 2.4.2.2 Finding the maximum of a concave function using the bisection

method

One of the alternative methods for finding the maximum of a negative convex function is the bisection

method. (Hillier and Liebermann 2010, p. 554f.) A CMPL programme to find the maximum of

f (x)=12 x−3 x4−2 x6 can be formulated as follows (bisection.cmpl):

#distance epsilon
e:=0.00001;
#initial solution
xl:= 0;
xo:= 2;
xn:= (xl+xo)/2;

{ (xo-xl) > e :
fd:= 12 - 12 * xn^3 - 12 * xn^5;
{ fd >= 0 : xl:=xn; |
 fd <= 0 : xo:=xn ;}
xn:= (xl+xo)/2;

fx := 12 * xn -3 * xn^4 - 2 * xn^6;

echo("f'(xn): " + fd + " xl: " + xl +
" xo: " + xo + " xn: " + xn +
" f(xn): " + fx);

CMPL 2.1.0 - Manual 110

repeat;
}

echo("Solution found");
echo("x: "+ xn);
echo("function value: " + (12 * xn -3 * xn^4 - 2 * xn^6));

Solution:

f'(xn): -12 xl: 0 xo: 1 xn: 0.5 f(xn): 5.78125
f'(xn): 10.125 xl: 0.5 xo: 1 xn: 0.75 f(xn): 7.69482
f'(xn): 4.08984 xl: 0.75 xo: 1 xn: 0.875 f(xn): 7.84386
f'(xn): -2.19397 xl: 0.75 xo: 0.875 xn: 0.8125 f(xn): 7.86718
f'(xn): 1.31437 xl: 0.8125 xo: 0.875 xn: 0.84375 f(xn): 7.88291
f'(xn): -0.339699 xl: 0.8125 xo: 0.84375 xn: 0.828125 f(xn): 7.8815
f'(xn): 0.511253 xl: 0.828125 xo: 0.84375 xn: 0.835938 f(xn): 7.88387
f'(xn): 0.0918924 xl: 0.835938 xo: 0.84375 xn: 0.839844 f(xn): 7.88381
f'(xn): -0.122357 xl: 0.835938 xo: 0.839844 xn: 0.837891 f(xn): 7.88394
f'(xn): -0.0148481 xl: 0.835938 xo: 0.837891 xn: 0.836914 f(xn): 7.88393
f'(xn): 0.038618 xl: 0.836914 xo: 0.837891 xn: 0.837402 f(xn): 7.88394
f'(xn): 0.0119089 xl: 0.837402 xo: 0.837891 xn: 0.837646 f(xn): 7.88395
f'(xn): -0.00146357 xl: 0.837402 xo: 0.837646 xn: 0.837524 f(xn): 7.88395
f'(xn): 0.00522419 xl: 0.837524 xo: 0.837646 xn: 0.837585 f(xn): 7.88395
f'(xn): 0.00188068 xl: 0.837585 xo: 0.837646 xn: 0.837616 f(xn): 7.88395
f'(xn): 0.000208652 xl: 0.837616 xo: 0.837646 xn: 0.837631 f(xn): 7.88395
f'(xn): -0.000627434 xl: 0.837616 xo: 0.837631 xn: 0.837624 f(xn): 7.88395
f'(xn): -0.000209385 xl: 0.837616 xo: 0.837624 xn: 0.83762 f(xn): 7.88395
Solution found
x: 0.83762
function value: 7.88395

 3 CMPL software package

 3.1 CMPL software package in a glance

CMPL (<Coliop|Coin> Mathematical Programming Language) is a mathematical programming language and

a system for mathematical programming and optimisation of linear optimisation problems.

CMPL executes HiGHS, SCIP, CBC, GLPK, Gurobi or CPLEX directly to solve the generated model instance.

The CMPL package contains HiGHS as a standard solver as well as SCIP. Because it is also possible to trans -

form the mathematical problem into MPS or Free-MPS, alternative solvers can be used.

The CMPL distribution contains Coliop which is an IDE (Integrated Development Environment) for CMPL and

also pyCMPL, jCMPL and CMPLServer.

pyCMPL is the CMPL application programming interface (API) for Python and jCMPL is CMPL's Java API.

The main idea of this APIs is to define sets and parameters within the user application, to start and control

the solving process and to read the solution(s) into the application if the problem is feasible. All variables,

objective functions and constraints are defined in CMPL. These functionalities can be used with a local CMPL

installation or a CMPLServer.

CMPL 2.1.0 - Manual 111

CMPLServer is an XML-RPC-based web service for distributed and grid optimisation that can be used with

CMPL, pyCMPL and jCMPL. It is reasonable to solve large models remotely on the CMPLServer that is in-

stalled on a high performance system. CMPL provides specific XML-based file formats for the communication

between a CMPLServer and its clients.

 3.2 Download and installation

CMPL binaries for Windows, Linux and macOS are available at http://www.coliop.org.

Linux and Windows:

An installation is not required after unpacking the ZIP or tar.gz file. The CMPL package works out of the box

in any folder.

macOS:

To use CMPL on macOS the following installation steps are necessary:

1) Download CMPL from http://www.coliop.org

2) Unzip CMPL package and copy (or move) the Cmpl2 folder to /Applications

3) Open Terminal

The easiest way to open Terminal is to press Cmd+Space to open Spotlight Search. Afterward type

type Terminal in the Spotlight input field. Simply select the Terminal entry in the search result list to

open Terminal.

4) Run Cmpl setup script in Terminal (just copy and paste the following command and press enter)

 /Applications/Cmpl2/cmpl_setup

To start CmplShell, the link cmplShell in /Applications/Cmpl2 have to be double-clicked. In addition

a user can do so in Coliop (Menu Actions -> Open CmplShell). To start cmpl on the command line please

use it inside CmplShell. If cmpl.opt or cmplServer.opt need to be edited, just open them via the links

in the /Applications/Cmpl2/opt subfolder.

 3.3 CMPL

 3.3.1 Running CMPL

It is recommanded to start cmpl inside CmplShell. On Windows and Linux, a user can also run CMPL by

starting the cmpl script in the CMPL folder (not in CMPLHOME/bin). A CMPL model can be solved with the

command cmpl <problemname>.cmpl.

CMPL 2.1.0 - Manual 112

http://www.coliop.org/
http://www.coliop.org/

 3.3.2 Usage of the CMPL command line tool

CMPL can be controlled by options, which can be specified as command line arguments or as options within

a CMPL header.

Usually, the first option is CMPL file followed by CMPL, solver and/or display options.

cmpl <cmplFile> [<options>]

The elements of CMPL header correspond to the command line options that can be used in the call to CMPL.

Exceptions are only those command line options that must already be evaluated before the CMPL file is read

and therefore cannot be used in CMPL header.

Each line for CMPL header starts with % as the first non-whitespace character. This is followed by the name

of the command line option (without the -, which introduces a command line option in the command line).

This is followed by the arguments of the command line option, separated by whitespace.

Alternatively, the line can begin with %arg. In this case, command line options and their arguments can be

specified as on the command line itself (i.e. with - in front of the name of the command line option). Several

command line options can then also be on one line.

Important options are described below.

Input options:

Command line:

-i <cmplFile> Input file (the file can also be specified as first option without

-i)

-include <file> Reads a Cmpl file additionally to the main Cmpl file

-data <file>[: elements] Reads a CmplData file

-xlsData <file>[: elements] Reads a CmplXlsData file

Cmpl header:

%include <file> Reads a Cmpl file additionally to the main Cmpl file

%data <file>[: elements] Reads a CmplData file

%xlsData <file>[: elements] Reads a CmplXlsData file

Output options:

Command line:

-m [<File>] Exports model in MPS format

-fm [<File>] Exports model in Free-MPS format in a file or stdout

-matrix [<File>] Exports the model as matrix in a file

-p [<File>] Writes protocol messages into <file>

-cmsg [<File>] Writes CMPL messages into <file>

-solution [<File>] Writes the solution in CmplSolution XML format in a file

CMPL 2.1.0 - Manual 113

-solutionAscii [<File>] Writes the solution in ASCII format in a file

-solutionCsv [<File>] Writes the solution in CSV format in a file

Cmpl header:

%m [<File>] Exports model in MPS format

%fm [<File>] Exports model in Free-MPS format in a file or stdout

%matrix [<File>] Exports the model as matrix in a file

%p [<File>] Writes protocol messages into <file>

%cmsg [<File>] Writes CMPL messages into <file>

%solution [<File>] Writes the solution in CmplSolution XML format in a file

%solutionAscii [<File>] Writes the solution in ASCII format in a file

%solutionCsv [<File>] Writes the solution in CSV format in a file

Display options:

Command line:

-display nonZeros Only activities with an value unequal to zero are shown in the

solution.

-display ignoreVars Variables are not shown in the solution.

-display ingnoreCons Constraints are not shown in the solution.

-display generatedElements Columns and rows generated by CMPL are shown.

-display <var|con> <varOr-

ConName=pattern>
Only variables and/or constraints with a name matching the

pattern are shown.

-display solutionPool Shows multiple solutions (only Cplex or Gurobi)

Cmpl header:

%display nonZeros Only activities with an value unequal to zero are shown in the

solution.

%display ignoreVars Variables are not shown in the solution.

%display ingnoreCons Constraints are not shown in the solution.

%display generatedElements Columns and rows generated by CMPL are shown.

%display <var|con> <varOr-

ConName=pattern>
Only variables and/or constraints with a name matching the

pattern are shown.

%display solutionPool Shows multiple solutions (only Cplex or Gurobi)

CMPL 2.1.0 - Manual 114

Solver and solver options:

 Command line:

-solver <highs|cbc|glpk|

scip|cplex|gurobi>
Specifies the solver to be invoked.

-opt <highs|cbc|glpk|scip|

cplex|gurobi>

<option>[=<val>]

Specifies options for the solver.

Cmpl header:

%solver <highs|cbc|glpk|

scip| cplex|gurobi>
Specifies the solver to be invoked.

%opt <highs|cbc|glpk|scip|

cplex|gurobi>

<option>[=<val>]

Specifies options for the solver.

CmplServer options:

Command line:

-url <url> Url of a CmplServer - Without other arguments, the problem

are solved on the CmplServer (synchronous mode)

-send Sends a problem to a CmplServer which have to be specified

with -url (asynchronous mode)

-knock Obtains the status of a problem on the CmplServer and

fetches the stdout and displays it (asynchronous mode).

-retrieve Retrieves the results of the problem from the CmplServer

(asynchronous mode)

-cancel Cancels the problem at the CmplServer (asynchronous mode)

-maxTries <x> Maximum number of tries of failed CmplServer calls

-maxTime <x> Maximum time in <x> seconds that a problem waits in a Cm-

plServer queue.

Cmpl header:

%url <url> Url of a CmplServer - Without other arguments, the problem

are solved on the CmplServer (synchronous mode)

%send Sends a problem to a CmplServer which have to be specified

with -url (asynchronous mode)

%knock Obtains the status of a problem on the CmplServer and

fetches the stdout and displays it (asynchronous mode).

%retrieve Retrieves the results of the problem from the CmplServer

(asynchronous mode)

%cancel Cancels the problem at the CmplServer (asynchronous mode)

%maxTries <x> Maximum number of tries of failed CmplServer calls

CMPL 2.1.0 - Manual 115

%maxTime <x> Maximum time in <x> seconds that a problem waits in a Cm-

plServer queue.

Other options:

Command line:

-silent Suppresses CMPL and solver messages

-int-relax Integer or binary variables are used as continues variables.

-threads <n> Use maximal n running threads (0: no threading)

-ordered Ordered execution in all explicit and implicit iterations

-check-only Only syntax check

-syntax-xml[<file>] Writes syntax structure of the Cmpl input as xml to <file>

-help Prints all options to stdOut

Cmpl header:

%silent Suppresses CMPL and solver messages

%int-relax Integer or binary variables are used as continues variables.

%threads <n> Use maximal n concurrently running threads (0: no thread-

ing)

%ordered Ordered execution in all explicit and implicit iterations

%check-only Only syntax check

%syntax-xml[<file>] Writes syntax structure of the Cmpl input as xml to <file>

%help Prints all options to stdOut

Examples:

cmpl test.cmpl Solves the problem test.cmpl locally with the de-
fault solver and displays a standard solution report

cmpl test.cmpl -solver cbc Solves the problem test.cmpl locally using CBC
and displays a standard solution report

cmpl test.cmpl ↵

-url http://194.95.44.187:8008

Solves the problem test.cmpl remotely with the
defined CMPLServer and displays a standard solution
report

cmpl test.cmpl -solutionCsv Solves the problem test.cmpl locally with the de-
fault solver writes the solution in the CSV-file
test.csv and displays a standard solution report

cmpl "/Users/test/Documents/ ↵

Projects/Project 1/test.cmpl"
If the file name or the path contains blanks then one
can enclose the entire file name in double quotes.

cmpl test.cmpl -m test.mps Reads the file test.cmpl and generates the MPS-

file test.mps.

cmpl test.cmpl -fm test.mps Reads the file test.cmpl and generates the Free-

MPS-file test.mps.

CMPL 2.1.0 - Manual 116

 3.3.3 Using CMPL with several solvers

There are two ways to interact with several solvers. It is recommended to use one of the solvers which are

directly supported and executed by CMPL. The CMPL package contains HiGHS as a standard solver as well as

SCIP. If you have installed CBC, Gurobi, CPLEX, GLPK then you can also use these solvers directly. To invoke

CPLEX, CBC or GLPK, the file cmpl.opt in CMPLHOME/bin must be edited, specifying the full filename of

the binary after the keyword for the solver. Gurobi works out of the box after installing it.

Example for cmpl.opt:

HIGHS ../Thirdparty/Highs/highs
CBC ../Thirdparty/CBC/cbc
GLPK ../Thirdparty/GLPK/glpsol
SCIP ../Thirdparty/Scip/scip
CPLEX /Applications/CPLEX_Studio2211/cplex/bin/arm64_osx/cplex
GUROBI gurobiCmpl

Because CMPL transforms a CMPL model into an MPS or a Free-MPS, the generated model instance can be

solved by using most of the free or commercial solvers.

 3.3.3.1 HiGHS

HiGHS is high performance serial and parallel software for solving large-scale sparse linear programming

(LP), mixed-integer programming (MIP) and quadratic programming (QP) models, developed in C++11, with

interfaces to C, C#, FORTRAN, Julia and Python. HiGHS is CMPL's default solver and part of the CMPL distri-

bution. For more information please visit https://highs.dev.

Since HiGHS is the default solver, HiGHS does not need not to be specified:

 cmpl <problem>.cmpl #Solves the problem locally with HiGHS

It is possible to use almost of the HiGHS solver options within the CMPL header. Please see https://ergo-

code.github.io/HiGHS/dev/options/definitions/ for a list of useful solver parameters.

Usage of HiGHS parameters within the CMPL header:

%opt highs <option>[=<val>]

 3.3.3.2 SCIP

SCIP is a project of the Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB). "SCIP is a framework for

Constraint Integer Programming oriented towards the needs of Mathematical Programming experts who

want to have total control of the solution process and access detailed information down to the guts of the

solver. SCIP can also be used as a pure MIP solver or as a framework for branch-cut-and-price. SCIP is im-

plemented as C callable library and provides C++ wrapper classes for user plugins. It can also be used as a

standalone program to solve mixed integer programs." [http://scip.zib.de/whatis.shtml](Achterberg 2009)

CMPL 2.1.0 - Manual 117

http://scip.zib.de/whatis.shtml
https://ergo-code.github.io/HiGHS/dev/options/definitions/
https://ergo-code.github.io/HiGHS/dev/options/definitions/
https://highs.dev/

Since SCIP is intended for solving mixed integer programming (MIP) problems, SCIP does not show margin-

als when an LP is solved.

The CMPL package contains SCIP and it can be used by the following command:

 cmpl <problem>.cmpl -solver scip

or by the CMPL header flag:

 %solver scip

All SCIP parameters described in the SCIP Doxygen Documentation can be used in the CMPL header.

Please see: https://scipopt.org/doc/html/SHELL.php#TUTORIAL_PARAMETERS

Usage SCIP parameters within the CMPL header:

%opt scip <option>[=<val>]

 3.3.3.3 CBC

Cbc (Coin-or branch and cut) is an open-source mixed integer programming solver written in C++. It can be

used as a callable library or stand-alone solver. The CMPL distribution contains the CBC binary. For more in -

formation please visit https://projects.coin-or.org/Cbc.

If CBC is installed on the same computer as CMPL then it can be connected to CMPL by changing the entry

CBC in the file <CMPLHOME>/bin/cmpl.opt. It can be used with the following command:

 cmpl <problem>.cmpl -solver cbc #Solves the problem locally with CBC

or by the CMPL header flag:

 %solver cbc

It is possible to use most of the CBC solver options within the CMPL header. Usage of CBC parameters

within the CMPL header:

%opt cbc <option>[=<val>]

CMPL 2.1.0 - Manual 118

https://projects.coin-or.org/Cbc
https://scipopt.org/doc/html/SHELL.php#TUTORIAL_PARAMETERS

 3.3.3.4 GLPK

The GLPK (GNU Linear Programming Kit) package is intended for solving large-scale linear programming

(LP), mixed integer programming (MIP), and other related problems. "The GLPK package includes the pro-

gram glpsol, which is a stand-alone LP/MIP solver. This program can be invoked from the command line ...

to read LP/MIP problem data in any format supported by GLPK, solve the problem, and write the problem

solution obtained to an output text file." (GLPK 2014, p. 166.). For more information please visit the GLPK

project website: http://www.gnu.org/software/glpk.

If GLPK is installed on the same computer as CMPL then GLPK can be connected to CMPL by changing the

entry GLPK in the file <CMPLHOME>/bin/cmpl.opt. It can be used with the following command:

 cmpl <problem>.cmpl -solver glpk

or by the CMPL header flag:

 %solver glpk

Most of the GLPK solver options can be used by defining solver options within the CMPL header. Usage of

GLPK parameters within the CMPL header:

%opt glpk <option>[=<val>]

 3.3.3.5 Gurobi

"The fastest and most powerful mathematical programming solver available for your LP, QP and MIP (MILP,

MIQP, and MIQCP) problems. See why so many companies are choosing Gurobi for better performance,

faster development and better support." (https://www.gurobi.com/products/gurobi-optimizer/)

If Gurobi is installed on the same computer as CMPL then Gurobi can be executed directly only by using the

command:

 cmpl <problem>.cmpl -solver gurobi

or by the CMPL header flag:

 %solver gurobi

All Gurobi parameters (excluding NodefileDir, LogFile and ResultFile) described in the Gurobi manual can be

used in the CMPL header.

CMPL 2.1.0 - Manual 119

http://www.gnu.org/software/glpk

Usage of Gurobi parameters within the CMPL header:

 %opt gurobi <option>[=<val>]

 3.3.3.6 CPLEX

CPLEX is a part of the IBM ILOG CPLEX optimisation Studio and includes simplex, barrier, and mixed integer

optimizers. "IBM ILOG CPLEX optimisation Studio provides the fastest way to build efficient optimisation

models and state-of-the-art applications for the full range of planning and scheduling problems. With its in-

tegrated development environment, descriptive modelling language and built-in tools, it supports the entire

model development process." (IBM ILOG CPLEX optimisation Studio manual)

If CPLEX is installed on the same computer as CMPL then CPLEX can be connected to CMPL by changing the

entry CPLEX in the file <CMPLHOME>/bin/cmpl.opt.

If this entry is correct then you can execute CPLEX directly by using the command

 cmpl <problem>.cmpl -solver cplex

or by the CMPL header flag:

 %solver cplex

All CPLEX parameters described in the CPLEX manual (Parameters of CPLEX Parameters Reference →

Manual) can be used in the CMPL header. Usage CPLEX parameters within the CMPL header:

%opt cplex <option>[=<val>]

You have to use the parameters for the Interactive Optimizer. The names of sub-parameters of hierarchical

parameters are to be separated by slashes.

 3.3.3.7 Other solvers

Since CMPL transforms a CMPL model into an MPS or a Free-MPS, the model can be solved using most free

or commercial solvers. To create MPS or a Free-MPS files please use the following commands:

cmpl <problemname>.cmpl <-m|-fm> <problemname>.mps #MPS export

CMPL 2.1.0 - Manual 120

 3.4 Coliop

Coliop is an IDE (Integrated Development Environment) for CMPL . Coliop is an open-source project licensed

under GPL. It is written in C++ and is as an integral part of the CMPL distribution available for most of the

relevant operating systems (OS X, Linux and Windows). Coliop can be started by clicking the Coliop symbol

in the CMPL folder (not in CMPLHOME/bin).

The first working step is to create or to open a CMPL model.

If the CMPL model imports an CmplData file by using the Cmpl header entry %data or the import of another

CMPL file by using %include then a list of the involved files are shown right of the CMPL model. A user can

switch between the files by clicking on the file names in this list. If a file does not exists then CMPL suggests

to create the file.

CMPL 2.1.0 - Manual 121

CMPL 2.1.0 - Manual 122

The model can be solved by clicking the button <Solve> in the toolbar or by choosing the menu entry <Ac-

tion Solve>. If the model is feasible and a solution is found the solution appears in the tab <Solution>.→

It is possible to obtain the output of the invoked solver and CMPL's output in the tab <Output>.

CMPL 2.1.0 - Manual 123

If a syntax error occurs then a user can analyse it by clicking on the error message in the CMPL message list

below the CMPL model. The position in the CMPL model that occurs the error is shown automatically.

 3.5 CMPLServer

The CMPLServer is an XML-RPC-based web service for distributed and grid optimisation. XML-RPC provides

XML based procedures for Remote Procedure Calls (RPC), which are transmitted between a client and a

server via HTTP. (St. Laurent et al. 2001, p. 1.) XML-RPC has been chosen since this it is less resource con-

suming than other protocols like SOAP or REST due to its simpler functionalities.

CMPL 2.1.0 - Manual 124

A CMPLServer can be used in a single server mode or in a grid mode:

Both modes can be understood as distributed systems “in which hardware and software components located

at networks computers communicate and coordinate their actions only by passing messages”. (Coulouris et

al, 2012, p. 17) Distributed optimisation is in this meaning interpretable as a distributed system that can be

used for solving optimisation problems. (cf. Kshemkalyani & Singhal, 2008, p. 1; Fourer et.al., 2010)

CMPL provides four XML-based file formats for the communication between a CMPLServer and its clients in

both modes (CmplInstance, CmplSolutions, CmplMessages). A CmplInstance file contains an op-

timisation problem formulated in CMPL, the corresponding sets and parameters in the CmplData file format

as well all CMPL and solver options that belong to the CMPL model. If the model is feasible and a solution is

found then a CmplSolutions file contains the solution(s) and the status of the invoked solver. If the

model is not feasible then only the solver’s status and the solver messages are given in the solution file. The

CmplMessages file is intended to provide the CMPL status and (if existing) the CMPL messages.

In the single server mode only one CMPLServer that can be accessed synchronously or asynchronously by

the clients exists in the network. A model can be solved synchronously by executing the CMPL binary with

the command line argument -url <url> or by running a pyCMPL or jCMPL programme by using the

methods Cmpl.connect(url) for connecting the server and Cmpl.solve() for solving the model re-

motely.1 The client sends the model to the CMPLServer and then waits for the results. If the model is feas-

ible and an optimal solution is found the solution(s) can be received. If the model contains syntax or other

errors or if the model is not feasible the CMPL and solver messages can be obtained. Whereby in the syn-

chronous mode the client has to wait after sending the problem for the results and Messages in one process,

a model can also be solved asynchronously with pyCMPL and jCMPL by using the methods Cmpl.send(),

Cmpl.knock() and Cmpl.retrieve()in several steps. After sending the model to the CMPLServer via

Cmpl.send()the server status can be obtained with Cmpl.knock(). If the CMPLServer is finished the

solution, the CMPL and the solver states and messages can be received by Cmpl.retrieve(). It is reas-

onable to use the single server mode if a large model is formulated on a thin client in order to solve it re -

motely on the CMPLServer that is installed on a high performance system.

All these distributed optimisation procedures require a one-to-one connection between a CMPLServer and

the client. The grid mode extends this approach by coupling CMPLServers from several locations and at least

1 Please take a look at the pyCMPL and jCMPL descriptions in chapter 4 .

CMPL 2.1.0 - Manual 125

one coordinating CMPLGridScheduler to one “virtual CMPLServer” as a grid computing system that can be

defined “as a system that coordinates distributed resources using standard, open, general-purpose protocols

and interfaces to deliver non-trivial qualities of service.” (Forster & Kesselmann 2003, pos. 722) For the cli -

ent there does not appear any difference whether there is a connection to a single CMPLServer or to a CM-

PLGrid. The client's model is to be connected with the same functionalities as for a single CMPLServer to a

CMPLGridScheduler which is responsible for the load balancing within the CMPLGrid and the assignment of

the model to one of the connected CMPLServers. After this step the client is automatically connected to the

chosen CMPLServer and the model can be solved synchronously or asynchronously. A CMPLGrid should be

used for handling a huge amount of large scale optimisation problems. An example can be a simulation in

which each agent has to solve its own optimisation problem at several times. An additional example for such

a CMPLGrid application is an optimisation web portal that provides a huge amount of optimisation problems.

Both modes can be controlled by the cmplServer script that can be started in the CmplShell.

cmplServer <command> [<port>] [-showLog]

command:

 -start starts as single CMPLServer
 -startInGrid starts CMPLServer and connects to CMPLGrid
 -startScheduler starts as CMPLGridScheduler
 -stop stops CMPLServer or CMPLGridScheduler
 -status returns the status of the CMPLServer or CMPLGridScheduler

port defines CMPLServer's or CMPLGridScheduler's port

-showLog shows the CMPLServer or CMPLGridScheduler log file

 3.5.1 Single server mode

The first step to establish the single server mode is to start the CMPLServer by typing the command:

cmplServer -start [<port>]

Optionally a port can be specified as second argument. The behaviour of a CMPLServer can be influenced by

editing the file cmplServer.opt that is located on Mac OS X in /Applications/Cmpl/cmplServer,on

Linux in /usr/share/Cmpl/cmplServer and on Windows in c:\program files[(x86)]\Cmpl\

cmplServer. The example below shows the default values in this file.

cmplServerPort = 8008

maxProblems = 4

maxInactivityTime = 43200

serviceIntervall = 30

solvers = highs scip

The default port of the CMPLServer can be specified with the parameter port. The parameter maxProb-

lems defines how many problems can be carried out simultaneously. If more problems than maxProblems

are connected with the CMPLServer the supernumerary problems are assigned to the problem waiting queue

and automatically started if a running problem is finished or cancelled. If a problem is longer inactive than

defined by the parameter maxInactivityTime it is cancelled and deleted automatically by the CM-

PLServer. This procedure as well as the problem waiting queue handling are performed by a service thread

CMPL 2.1.0 - Manual 126

that works perpetual after a couple of seconds defined by the parameter serviceIntervall. With the

parameter solvers it can be specified which solvers in the set of the installed solvers can be provided by

the CMPLServer.

A running CMPLServer can be accessed by the CMPL binary or via CMPL's Python and Java APIs that contain

CMPLServer clients. One can execute a CMPL model remotely on a CMPLServer by using the command line

argument -cmplUrl.

 cmpl <problem>.cmpl -url http://<ip-adress-or-Domain>:<port>

This command executes the problem on the CMPLServer synchronously. That means CMPL waits right after

sending the problem for the results and messages in one process.

It is also possible to run a Cmpl Problem asynchronously on a CMPLServer. In a first step, the problem is

sent to the server by coupling the -cmplUrl argument with the -send command line argument.

 cmpl <problem>.cmpl -url http://<ip-adress-or-Domain>:<port> -send

Afterwards, the status of the problem can be obtained by using the command line argument -knock.

 cmpl <problem>.cmpl -knock

The results can be retrieved by using the command line argument -retrieve after finishing the problem

on the CMPLServer.

 cmpl <problem>.cmpl -retrieve

It is also possible to cancel the problem on the CmplServer if necessary by using the command line argu-

ment -cancel.

 cmpl <problem>.cmpl -cancel

The status of a problem which is sent to a CMPLServer but not retrieved is saved automatically in a dump

file in the temp folder. Therefore the computer could be switched off after sending the problem and later

switched on to retrieve it.

In pyCMPL and jCMPL a CMPLServer can be connected by using the method Cmpl.connect(). Executing a

model can be done synchronously by executing the method Cmpl.solve() or asynchronously by using the

CMPL 2.1.0 - Manual 127

cmplServer -start [<port>] [-showLog]

start server

cmplServerPort = 8008
maxProblems = 4
maxInactivityTime = 43200
serviceIntervall = 30
solvers = highs scip

cmplServer.opt

methods Cmpl.send(), Cmpl.knock() and Cmpl.retrieve(). These main functionalities are illus-

trated in the following picture.

In the first step the client connects the CMPLServer, hands over its problem name and the solver with which

the problem is to be solved. Then the client receives the status of the CMPLServer and if the status is CM-

PLSERVER_OK also the jobId is also sent. The status is CMPLSERVER_ERROR if the demanded solver is

not supported or a CMPLServer occurs.

The synchronous method Cmpl.solve() is a bundle of the asynchronous methods Cmpl.send(), Cm-

pl.knock() and Cmpl.retrieve().

Cmpl.send() sends a CmplInstance XML string that contains all relevant information about a CMPL

model including the jobId, the CMPL and the solver options as well as the model itself and its data files to

the CMPLServer. If the number of running problems including the model sent is greater than maxProblems

the model is moved to the problem waiting queue and the CMPLServer returns the status

CMPLSERVER_BUSY. If not the CMPLServer starts the solving process automatically if the CmplInstance

string is completely received and the model and data files are written to the hard disc. In this case the status

is set to PROBLEM_RUNNING.

A CMPLServer uses the home path of the user who is running it and saves all relevant data in $HOME/Cm-

plServer (Mac and Linux) or %HOMEPATH%\CmplServer (Windows). The activities of the server can be

obtained in the file CmplServer.log. Each problem is stored in an own folder specified by the jobId

which is deleted automatically after disconnecting the problem.

In the next step the client asks the CMPLServer whether solving the problem is finished or not via Cm-

pl.knock() whereby the jobId identifies the problem and the CMPLServer returns the current status. The

client has to knock until the status is PROBLEM_RUNNING (or CMPLSERVER_ERROR). If the status is CM-

CMPL 2.1.0 - Manual 128

PLSERVER_BUSY the problem is put into the problem waiting queue until an empty solving slot is available

or the maximum queuing time (defined with the CMPL option -maxQueuingTime or by default 300

seconds) is reached. The procedure then stops automatically.

If the status is equal to PROBLEM_RUNNING the solution, the CMPL and the solver messages and if reques-

ted some statistics can be received by using Cmpl.retrieve(). The client sends its jobId and then re-

trieves the CmplSolution, CmplMesages and CmplInfo XML strings. If Cmpl.knock() returns

CMPLSERVER_ERROR the process is stopped.

The CMPLServer can be stopped by typing the command:

cmplServer -stop [<port>]

 3.5.2 Grid mode

A CMPLGrid consists at least of one CMPLGridScheduler and usually a couple of CMPLServers that are con-

nected to at least one scheduler. A CMPLGridScheduler is the gateway to the CMPLGrid for the clients and

has to coordinate the traffic in the grid, that means it is responsible for the load balancing within the CM-

PLGrid and the assignment of the models to the connected CMPLServers. After receiving a model from a CM-

PLGridScheduler a CMPLServer has to communicate directly with the client to receive the model, to solve it

and to send (if the problem is feasible) the solution(s), the CMPL and solver messages and if requested

some information to the client. After these steps the client is disconnected automatically and the CMPLServ-

ers is waiting for the next problem from a CMPLGridScheduler.

The first step to start a CMPLGrid is to execute one or more CMPLGridScheduler by typing the command:

cmplServer -startScheduler [<port>]

As for the CMPLServers the parameter of a CMPLGridScheduler can be edited in the file cmplServer.opt.

The relevant parameters in cmplServer.opt for a CMPLGridScheduler with there default values are shown

below.

cmplServerPort = 8008

maxServerTries = 3

schedulerServiceIntervall = 0.1

The default port of the CMPLGridScheduler can be specified by the parameter port. If one wants to run a

CMPLServer on the same computer as the CMPLGridScheduler then the server needs to be started with a dif-

CMPL 2.1.0 - Manual 129

ferent port via command line argument. Since the CMPLGridScheduler has to call functions provided by con-

nected CMPLServers and additionally has to ensure a high availability and failover, the CMPLGridScheduler

repeats failed CMPLServer calls whereby the number of tries are specified by the parameter maxServer-

Tries. There is also a service thread that works permanently after a couple of seconds defined by the

parameter serviceIntervall. Because this service thread is among others responsible for the problem

waiting queue handling on the CMPLGridScheduler it makes sense to choose very short service intervals.

After running one or more CMPLGridSchedulers the involved CMPLServers can be started by typing the com-

mand:

cmplServer -startInGrid [<port>]

In addition to the described parameters in cmplServer.opt the following parameters are necessary for

running a CMPLServer in a CMPLGrid.

...

maxServerTries = 3

performanceIndex = 1

cmplGridScheduler = http://10.0.1.52:8008 4

A CMPLServer in a CMPLGrid also has to call functions provided by a CMPLGridScheduler. Due to maximum

availability and failover the maximum number of tries of failed CMPLGridScheduler calls are to be specified

with the parameter maxServerTries. Assuming heterogeneous hardware for the CMPLServers in a CM-

PLGrid it is necessary for a reasonable load balancing to identify several performance levels of the invoked

CMPLServers. This can be done by the parameter performanceIndex that influences the load balancing

function directly. The involved operators of the CMPLServers and the CMPLGridScheduler(s) should specify

standardised performance classes used within the entire CMPLGrid with the simple rule: the higher the per-

formance class, the higher the performanceIndex. The parameter cmplGridScheduler is intended to

specify the CMPLGridScheduler to which the CMPLServer is to be connected. The first argument is the URL

of the scheduler. The second parameter defines the maximum number of problems that the CMPLServer

provides to this CMPLGridScheduler. If a CMPLServer should be connected to more than one scheduler one

entry per CMPLGridScheduler is required. In the following example the CMPLServer will be connected to two

CMPLGridSchedulers with maximally two problems per scheduler.

CMPL 2.1.0 - Manual 130

...

cmplGridScheduler = http://10.0.1.52:8008 2

cmplGridScheduler = http://10.0.1.53:8008 2

While connecting the CMPLGridScheduler the CMPLServer sends its port, the maximum number of provided

problems and its performance index. It receives the status of the CMPLGridScheduler and a serverId. Pos-

sible states for connecting a CMPLServer are CMPLGRID_SCHEDULER_OK or CMPLGRID_SCHEDULER _ER-

ROR.

Now a client can connect the CMPLGrid in the same way as a client connects a single CMPLServer either by

using the CMPL binary

 cmpl <problem>.cmpl -url http://<ip-adress-or-Domain>:<port>

or in pyCmpl and jCMPL programmes through the method Cmpl.connect().

The client sends automatically the name of the problem and the name of the solver with which the problem

should be solved to the CMPLGridScheduler.

If the name of the solver is unknown or this solver is not available in the CMPLGrid the CMPLGridScheduler

returns CMPLSERVER_ERROR. In case the problem waiting queue is not empty the problem is then as-

signed to the problem waiting queue and the status is CMPLGRID_SCHEDULER_BUSY.

Otherwise the CMPLGridScheduler returns the status CMPLGRID_SCHEDULER_OK, the serverUrl of the

CMPLServer on which the problem will be solved and the jobId of the problem. This CMPLServer is determ-

ined on the basis of the load balancing function that is shown in the picture below. Per server that is provid-

ing the solver the current capacity factor is to be calculated by the relationship between the current empty

problems of this server and the maximum number of provided problems. The number of empty problems is

controlled by the CMPLGridScheduler with a lower bound of zero and an upper bound equal to the maximum

number of provided problems. This parameter is decreased if the CMPLServer is taking over a problem and it

is increased when the CMPLServer has finished the problem or the problem is cancelled. The idea is to send

problems tendentiously to those CMPLServer with the highest empty capacity. To include the different per-

formance levels of the invoked CMPLServers in the load balancing decision, the current capacity factor is to

CMPL 2.1.0 - Manual 131

be multiplied by the performance index. The result is the load balancing factor and the CMPLServer with the

highest load balancing factor is assigned to the client to solve the problem. This CMPLServer then gets the

jobId of the CMPL problem by the CMPLGridServer in order to take over all relevant processes to solve this

problem. Afterwards the client is automatically connected to this CMPLServer.

The problem waiting queue handling is organised by the CMPLGrid Scheduler service thread that assigns the

waiting problems automatically to CMPLServers by using the same functionalities as described above. The

waiting clients either ask automatically in the synchronous mode or manually in the asynchronous mode

both through Cmpl.knock() until the received status is not equal to CMPLGRID_SCHEDULER_BUSY.

The next steps to solve the problem synchronously or asynchronously on the CMPLServer are similar to the

procedures in the single server mode as shown in the following figure.

The methods Cmpl.send(), Cmpl.knock() and Cmpl.retrieve() are used to send the problem to

the CMPLServer, to knock for the current status, to retrieve the solution and the CMPL and the solver mes-

sages and if requested some statistics. The main differences to the single server mode are that the CM-

PLServer calls the CMPLServerGrid to add an empty problem slot after finishing solving the problem and that

the client is disconnected automatically from the CMPLServer after retrieving the solution, messages and

statistics.

The CmplGridScheduler and the CmplServers can be stopped by typing the command:

cmplServer -stop [<port>]

CMPL 2.1.0 - Manual 132

 3.5.3 Reliability and failover

A distributed optimisation system or a grid optimisation system is usually implemented in a heterogeneous

environment. The network notes can be installed on different hardware as well as on different operating sys -

tems. This fact could cause some disturbances within the optimisation network that should be either

avoided or reduced in their negative impact of the optimisation processes.

Beside ensuring a good performance, maximum reliability and failover are therefore important targets of the

CMPLServer and the CMPLGrid implementations. They are ensured by:

(a) the problem queue handling on the CMPLGridScheduler and the CMPLServer,

(b) multiple executions of failed server calls and

(c) re-connections of problems to the CMPLGridScheduler if an assigned CMPLServer fails.

(a) Problem queue handling

If a problem is connected to a CMPLServer or a CMPLGridScheduler and the number of running problems in-

cluding the model sent is greater than maxProblems, it neither makes sense to cancel the problem nor to

interrupt the solving process. Especially in case of an iterating solving process with a couple of depending

problems it is the better way to refer the supernumerary problems automatically to the problem waiting

queue.

For the single server mode the problem queue handling is organised by the CMPLServer whilst in the grid

mode the CMPLGridScheduler(s) are responsible for it. In both modes a problem stored in the problem wait-

ing queue has to wait until an empty solving slot is available or the maximum queuing time is reached.

In the single server mode the number of problems that can be executed simultaneously on the particular

CMPLServer are defined by the parameter maxproblems in cmplServer.opt. With this parameter it

should be avoided to overwhelm the server and to avoid the super-proportional effort for managing a huge

amount of parallel problems. The first empty solving slot that appears when a running problem is finished or

cancelled, is taking over a waiting problem by using the FIFO approach.

The number of simultaneously running problems in a CMPLGrid is defined by the sum over all connected CM-

PLServer of the maximum number of problems provided by the servers. This parameter is to be defined per

CMPLServer in cmplServer.opt as second argument in the entry cmplGridScheduler = <url>

<maxProblems>. The CMPLGridScheduler counts the number of running problems per CMPLServer in rela-

tion to its maximum number of provided problems. If it is not possible to find a connected CMPLServer with

an empty solving slot then the problem is put to the problem waiting queue. In contrast to the single server

mode the problem which has been waiting longest is not executed by the first appearing free CMPLServer

but it is organised by the described load balancing function over the set of CMPLServers that stated an

empty solving slot during two iterations of the CMPLGridScheduler service thread.

The client’s maximum queuing time in seconds can be specified with the CMPL command line argument -

maxTime <sec>. This argument can also be set as CMPL header entry %maxTime <sec> or in pyCMPL

and jCMPL with the method Cmpl.setMaxServerQueuingTime(<sec>”. The default value is 300

seconds.

CMPL 2.1.0 - Manual 133

(b) Multiple executions of failed server calls

To avoid that a single execution of a server method, which fails due to network problems like socket errors

or others, cancels the entire process, all failed server calls can be executed again several times. The max-

imum number of executions of failed server calls can be specified for the clients by the CMPL command line

argument -maxTries <tries>. It can also be used in a CMPL header entry %maxTries <tries> or

in pyCMPL and jCMPL by using Cmpl.setMaxServerTries(<tries>). The default value is 10. The

number of maximum executions of failed server calls in the communication between the CMPLGridScheduler

and CMPLServers is defined in cmplServer.opt with the entry maxServerTries = <tries>.

An exemplary and simplified implementation of this behaviour is shown in the pseudo code listing below:

1

2

3

4

5

6

7

8

9

10

11

12

13

serverTries=0

while True do

try

callServerMethod()

except

serverTries+=1

if serverTries>maxServerTries then

status=CMPLSERVER_ERROR

raise CmplException("calling CmplServer function … failed")

end if

end try

break

end while

In a first step the variable serverTries is assigned zero. The call of the server method (line 4) is imbed-

ded in an infinite loop (lines 2-13) and in a try-except-block for the exception handling (lines 3-11). If no

exception occurs then the loop is finished by the break command in line 12. Otherwise serverTries is in-

cremented by 1. If the maximum number is not exceeded (line 7) the server method is called again (line 4).

If serverTries is greater than maxServerTries then the class variable Cmpl.status is set to CM-

PLSERVER_ERROR and a CmplException is raised that have to be handled in the code in which the list-

ing below is imbedded (lines 7-9).

(c) Re-connections of failed problems to the CMPLGridScheduler

Multiple server calls are mainly intended to prevent network problems. But it could be also possible that

other problems caused by CMPLServers connected to a CMPLGridScheduler (e.g. a failed execution of a

solver, file handling problems at a CMPLServer or the unpredictable shutdown of a CMPLServer) occur. The

idea to handle such problems is that if the assigned CMPLServer fails the particular problem is then recon-

nected to the CMPLGridScheduler and is taken over by another CMPLServer automatically.

The following pseudo code listing describes a simplified implementation of Cmpl.solve() only for the grid

mode to illustrate this approach:

CMPL 2.1.0 - Manual 134

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

serverTries=0

while True do

try

if status==CMPLSERVER_ERROR then

CmplGridScheduler.connect()

end if

if status==CMPLGRID_SCHEDULER_BUSY then

while status<>CMPLGRID_SCHEDULER_OK do

CmplGridScheduler.knock()

if waitingTime()>=maxQueuingTime then

raise CmplException("max. queuing time is exceeded.")

end if

end while

end if

connectedToServer=True

CmplServer.send()

while status<>PROBLEM_FINISHED do

CmplServer.knock()

end while

CmplServer.retrieve()

break

except CmplException

serverTries+=1

if status==CMPL_ERROR and connectedToServer==True then

CmplGridScheduler.cmplServerFailed()

end

if serverTries>maxServerTries or status==CMPLGRID_SCHEDULER_BUSY then

ExceptionHandling()

exit

end if

end try

end while

As in the listing of the multiple server calls the variable serverTries is assigned zero (line 1). The entire

method is also imbedded in an infinite loop (lines 2-37) and the exception handling is organised as try-ex-

cept-block (lines 3-36).

Before Cmpl.solve() is called the client has to execute Cmpl.connect() successfully. Therefore the

class variable Cmpl.status has to be unequal to CMPLSERVER_ERROR and an additional Cmpl.con-

nect() is not necessary in the first run of Cmpl.solve()(lines 4-6).It is possible that the entire CM-

PLGrid is busy, the status equals CMPLGRID_SCHEDULER_BUSY and the problem is moved to the CM-

CMPL 2.1.0 - Manual 135

PLGridScheduler problem waiting queue (line 8). In this case the problem has to wait for the next empty

solving slot via Cmpl.knock()(line 10) until the CMPLGridScheduler returns the status CMPLGRIDSCHED-

ULER_OK (line 9) or the waiting time exceeds the maximum queuing time and a CmplException is raised

(lines 11-13).

After this loop the problem is automatically connected to a CMPLServer within the CMPLGrid. The class vari-

able Cmpl.connectedToServer is assigned True (line 16) and the problem is sent to this server

through Cmpl.send() (line 18). The problem then has to wait until the problem status is PROBLEM_FIN-

ISHED (lines 20-22). As soon as the problem is finished, the solution(s), the CMPL and the solver messages

as well as (if requested) some statistics can be retrieved via Cmpl.retrieve() (line 24). If no CmplEx-

ception or another exception appeared during this procedures the infinite loop is left by the break com-

mand in line 25.

Otherwise the CmplException or other exceptions have to be handled in the except block in the lines 27-

36. The first step is to increase the number of failed server call tries (line 28). If while executing Cmpl.-

connect(), Cmpl.send(), Cmpl.knock() or Cmpl.retrieve() an exception is raised and the prob-

lem is connected to a CMPLServer then the client calls the CMPLGridScheduler method cmplServer-

Failed() in order to report that this CMPLServer failed and to set the status of this server to inactive on

the CMPLGridScheduler (line 30). This CMPLServer is then excluded from the CMPLGridScheduler load balan-

cing until CMPLGridScheduler's service thread recognises that this CMPLServer is able to take over problems

again.

If the number of failed server calls exceeds the maximum number of tries or the status is

CMPLGRID_SCHEDULER_BUSY because the maximum queuing time is exceeded (line 32), the entire pro-

cedure stops by doing the necessary exception handling and by exiting the programme (lines 33-34).

Otherwise the problem has to pass the loop again. That means that the problem is reconnected to the CM-

PLGrid via CMPLGridScheduler.connect() (lines 4-6) and the solving process starts again.

 3.6 pyCMPL

pyCMPL is the CMPL API for Python3. The main idea of this API is to define sets and parameters within the

user application, to start and control the solving process and to read the solution(s) into the application if

the problem is feasible. All variables, objective functions and constraints are defined in CMPL. These func-

tionalities can be used with a local CMPL installation or a CMPLServer.

To execute a pyCmpl script, it is necessary to start the cmplShell script in the CMPL folder, which sets the

CMPL environment (PATH, environment variables and library dependencies) and starts a command line win-

dow in which a pyCmpl script can be executed with the command python <problemname>.py. The

CMPL package contains a Python environment with all necessary binaries, modules and packages. Other

modules and packages can be added via the PYTHONPATH environment variable or installed directly in the

Python environment supplied.

CMPL 2.1.0 - Manual 136

 3.7 jCMPL

jCMPL is the CMPL API for Java. The main idea of this API is similar to pyCMPL to define sets and paramet-

ers within the user application, to start and control the solving process and to read the solution(s) into the

application if the problem is feasible. All variables, objective functions and constraints are defined in CMPL.

These functionalities can be used with a local CMPL installation or a CMPLServer.

To use the jCMPL functionalities a Java programme has to import jCMPL by import jCMPL.*; and to link

your application against jCmpl.jar and the following jar files, that you can find in the CMPL application

folder in jCmpl/lib (Windows and Linux) or on GitHub (https://github.com/MikeSteglich/jCmpl).

Additionally, it is necessary to specify an environment variable CMPLHOME that contains the full path to the

CMPL folder. This can be done by executing the cmplShell script in the Cmpl folder and to run the Java

program in this environment.

 3.8 Input and output file formats

 3.8.1 Overview

As shown in the picture below, CMPL uses several ASCII files for the communication with the user, solvers

and CMPLServer.

CMPL 2.1.0 - Manual 137

https://github.com/MikeSteglich/jCmpl

CMPL input file for CMPL - syntax as described above

CmplData data file format for CMPL - syntax as described above

Free-MPS output file for the generated model in Free-MPS format

CmplInstance XML file that contains all relevant information about a CMPL model sent to a
CMPLServer

Result files solutions of a CMPL model can be obtained in the form of an ASCII, CSV or
CmplSolutions file

CmplSolutions solutions can be solved in CMPL's XML based solution file format

CmplMessages XML file that contains the status and messages of a CMPL model

To describe the several file types it is necessary to distinguish between the local and the remote mode.

In the local mode a CMPL model and (if existing) the corresponding CmplData files are parsed and translated

into a Free-MPS file (If no syntax or other error occur). If there are some errors in the CMPL model the

CMPL messages are shown automatically or can be saved in a CmplMessages file. The Free-MPS file is to-

gether with solver specific parameter handed over to the chosen solver that is executed directly by CMPL. If

the problem is feasible and an optimal solution is found CMPL reads the solution in form of the solver spe-

cific result format. A CMPL user can now obtain the standard solution report or can save the solution(s) as

ASCII or CSV file or as CmplSolutions file. It is also possible to obtain the generated matrix and some statist -

ics on the screen or in a plain text file.

A user can also process his or her CMPL model remotely on a CMPLServer. In the first step CMPL writes

automatically all model relevant information (CMPL and CmplData files, CMPL and solver options) in a Cm-

plInstance file and sends it to the connected CMPLServer. After solving the model CMPL receives two XML-

based file formats (CmplSolutions, CmplMessages) and the user can obtain (if an optimal solution is found)

the standard solution report or can save the solution(s) and also can get the generated matrix and some

statistics. If the CMPL model contains errors then the user can retrieve the CMPL messages.

 3.8.2 CMPL and CmplData

A CMPL file is an ASCII file that includes the user-defined CMPL code with a syntax as described in this
manual.

The example

1 ⋅ x1+2 ⋅ x2+3⋅ x3 →max!

s . t .

5.6 ⋅ x1+7.7⋅ x2+10.5 ⋅ x3≤ 15

9.8 ⋅ x1+4.2 ⋅ x2+11.1 ⋅ x3 ≤20

0≤ xn ;n∈ {1,2,3 }

can be formulated with the CmplData file test.cdat

%n set <1..2>

%m set <1..3>

%c[m] < 15 18 22 >

CMPL 2.1.0 - Manual 138

%b[n] < 175 200 >

%A[n,m] < 5 10 15

 10 5 10 >

and the CMPL file test.cmpl

%data test.cdat

var:

 x[m]: real[0..];

obj:

 profit: c^T * x[] -> max;

con:

 res: A * x <= b;

 3.8.3 Free-MPS

The Free-MPS-format is internally used for the communication between CMPL and all local installed solvers.

The Free-MPS format is an improved version of the MPS format. There is no standard for this format but it is

widely accepted. The structure of a Free-MPS file is the same as an MPS file. But most of the restricted MPS

format requirements are eliminated, e.g. there are no requirements for the position or length of a field. For

more information please visit the project website of the lp_solve project. [http://lpsolve.sourceforge.net]

The Free-MPS file for the given CMP example is generated as follows:

* CMPL - Free-MPS - Export
NAME test
* OBJNAME profit
* OBJSENSE MAX
ROWS
 N profit
 L res[1]
 L res[2]
COLUMNS
 x[1] profit 15 res[1] 5
 x[1] res[2] 10
 x[2] profit 18 res[1] 10
 x[2] res[2] 5
 x[3] profit 22 res[1] 15
 x[3] res[2] 10
RHS
 RHS res[1] 175 res[2] 200
BOUNDS
 PL BOUND x[1]
 PL BOUND x[2]
 PL BOUND x[3]
ENDATA

 3.8.4 CmplInstance

CmplInstance is an XML-based format that contains all relevant information about a CMPL model (CMPL and

CmplData files, CMPL and solver options) to be sent to a CMPLServer.

CMPL 2.1.0 - Manual 139

A CmplInstance file consists of three major sections. The <general> section contains the name of the

problem and the jobId that is received automatically during connecting the CMPLServer. The <options>

section consists of the CMPL and solver options that a user has specified on the command line. The <prob-

lemFiles> section is indented to store the CMPL file and all corresponding CmplData files. All CmplData

files no matter whether they are specified within the CMPL model or as command line argument are auto -

matically included in the CmplInstance file. To avoid some misinterpretation of some special characters while

reading the CmplInstance on the CMPLServer the content of the CMPL model and the CmplData files are

automatically unescaped by CMPL.

The XSD (XML Schema Definition) of CmplInstance is defined as follows:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="CmplInstance">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="general" minOccurs="1" maxOccurs="1" />
 <xs:element ref="options" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="problemFiles" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="version" type="xs:decimal" use="required"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="general">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="jobId" type="xs:string" minOccurs="1" maxOccurs="1"/>

 <xs:element name="preComp" type="xs:string" minOccurs="1" maxOccurs="1"/>
</xs:sequence>

 </xs:complexType>
 </xs:element>

 <xs:element name="options">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="opt" type="xs:string" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="problemFiles">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="file" minOccurs="1" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>

CMPL 2.1.0 - Manual 140

 </xs:element>

 <xs:element name="file">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>

</xs:schema>

If the given example is run with cmpl test.cmpl -url http://127.0.0.1:8008 -solver scip

the CmplInstance file test.cinst is automatically created by CMPL, sent to the CmplServer and the

model is executed remotely on a CMPLServer.

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>

<CmplInstance version="2.0">

<general>

<name>test.cmpl</name>

<jobId>S127.0.0.1-2021-05-15-16-36-52-809667</jobId>

<preComp>yes</preComp>

</general>

<options>

<opt>-solver scip</opt>

</options>

<problemFiles>

<file name="test.cmpl" >

%data test.cdat

var:

 x[m]: real[0..];

obj:

 profit: c^T * x -> max;

con:

 res: A * x <= b;

</file>

<file name="test.cdat" >

%n set <1..2>

%m set <1..3>

%c[m] < 15 18 22 >

%b[n] < 175 200 >

%A[n,m] < 5 10 15

 10 5 10 >

CMPL 2.1.0 - Manual 141

</file>

</problemFiles>

</CmplInstance>

 3.8.5 ASCII or CSV result files

If the problem is feasible and an optimal solution is found a user can obtain this optimal solution in the form

of an ASCI or CSV file by using the command line arguments -solutionAscii [<file>] or -solu-

tionCsv [<file>]. This files can additionally contain all integer feasible solutions if Cplex or Gurobi are

used and the the CMPL header option %display solutionPool is defined.

The ASCII result file test.sol for the given CMPL example is generated as follows:

Problem test.cmpl
Nr. of variables 3
Nr. of constraints 2
Objective name profit
Solver name SCIP
Display variables (all)
Display constraints (all)

Objective status optimal
Objective value 405.00 (max!)

Variables
Name Type Activity LowerBound UpperBound Marginal

x[1] C 15.00 0.00 inf 0.00
x[2] C 10.00 0.00 inf 0.00
x[3] C 0.00 0.00 inf -7.00

Constraints
Name Type Activity LowerBound UpperBound Marginal

res[1] L 175.00 -inf 175.00 1.40
res[2] L 200.00 -inf 200.00 0.80

The corresponding CSV result file test.csv is generated as follows:

CMPL csv export

Problem;test.cmpl

Nr. of variables;3

Nr. of constraints;2

Objective name;profit

Solver name;SCIP

Display variables;(all)

Display constraints;(all)

Objective status;optimal

Objective value;405.000000;(max!)

Variables

Name;Type;Activity;LowerBound;UpperBound;Marginal

x[1];C;15.000000;0.000000;inf;0.000000

x[2];C;10.000000;0.000000;inf;0.000000

x[3];C;0.000000;0.000000;inf;-7.000000

CMPL 2.1.0 - Manual 142

Constraints

Name;Type;Activity;LowerBound;UpperBound;Marginal

res[1];L;175.000000;-inf;175.000000;1.400000

res[2];L;200.000000;-inf;200.000000;0.800000

 3.8.6 CmplSolutions

CmplSolutions is an XML-based format for representing the general status and the solution(s) if the problem

is feasible and one or more solutions are found. A user can save it by using the command line argument -

solution [<File>]. It is also internally used for receiving solution(s) from a CMPLServer.

As shown in the corresponding XSD below A CmplSolutions file contains a <general> block for general in-

formation about the solved problem and a <solutions> block for the results of all solutions found includ-

ing the variables and constraints.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

 <xs:element name="CmplSolutions">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="general" minOccurs="1" maxOccurs="1"/>
 <xs:element ref="solution" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="version" use="required" type="xs:decimal"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="general">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="instanceName" type="xs:string" minOccurs="1" maxOccurs="1" />
 <xs:element name="nrOfVariables" type="xs:nonNegativeInteger" minOccurs="1" maxOccurs="1"/>
 <xs:element name="nrOfConstraints" type="xs:nonNegativeInteger" minOccurs="1" maxOccurs="1"
/>
 <xs:element name="objectiveName" type="xs:string" minOccurs="1" maxOccurs="1" />
 <xs:element name="objectiveSense" type="xs:string" minOccurs="1" maxOccurs="1" />
 <xs:element name="nrOfSolutions" type="xs:nonNegativeInteger" minOccurs="1" maxOccurs="1"/>
 <xs:element name="solverName" type="xs:string" minOccurs="1" maxOccurs="1" />
 <xs:element name="variablesDisplayOptions" type="xs:string" minOccurs="1" maxOccurs="1" />
 <xs:element name="constraintsDisplayOptions" type="xs:string" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="solution">
 <xs:complexType>
 <xs:sequence>

CMPL 2.1.0 - Manual 143

 <xs:element ref="variables" minOccurs="1" maxOccurs="1"/>
 <xs:element ref="linearConstraints" minOccurs="1" maxOccurs="1" />
 </xs:sequence>
 <xs:attribute name="idx" use="required" type="xs:nonNegativeInteger"/>
 <xs:attribute name="status" use="required" type="xs:string"/>
 <xs:attribute name="value" use="required" type="xs:decimal"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="variables">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="unbounded" ref="variable"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="linearConstraints">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="unbounded" ref="constraint"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="variable">
 <xs:complexType>
 <xs:attribute name="idx" use="required" type="xs:nonNegativeInteger"/>
 <xs:attribute name="name" use="required" type="xs:string"/>
 <xs:attribute name="type" use="required" type="varType"/>
 <xs:attribute name="activity" use="required" type="xs:double"/>
 <xs:attribute name="lowerBound" use="required" type="xs:double"/>
 <xs:attribute name="upperBound" use="required" type="xs:double"/>
 <xs:attribute name="marginal" use="required" type="xs:double"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="constraint">
 <xs:complexType>
 <xs:attribute name="idx" use="required" type="xs:nonNegativeInteger"/>
 <xs:attribute name="name" use="required" type="xs:string"/>
 <xs:attribute name="type" use="required" type="conType"/>
 <xs:attribute name="activity" use="required" type="xs:double"/>
 <xs:attribute name="lowerBound" use="required" type="xs:double"/>
 <xs:attribute name="upperBound" use="required" type="xs:double"/>
 <xs:attribute name="marginal" use="required" type="xs:double"/>
 </xs:complexType>
 </xs:element>

CMPL 2.1.0 - Manual 144

 <xs:simpleType name="varType">
<xs:restriction base="xs:string">

<xs:enumeration value="C"/>
<xs:enumeration value="I"/>
<xs:enumeration value="B"/>

</xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="conType">

<xs:restriction base="xs:string">
<xs:enumeration value="L"/>
<xs:enumeration value="E"/>
<xs:enumeration value="G"/>

</xs:restriction>
 </xs:simpleType>

</xs:schema>

The CmplSolutions file test.csol for the given CMPL example is generated as follows:

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>

<CmplSolutions version="1.1">

 <general>

 <instanceName>test.cmpl</instanceName>

 <nrOfVariables>3</nrOfVariables>

 <nrOfConstraints>2</nrOfConstraints>

 <objectiveName>profit</objectiveName>

 <objectiveSense>max</objectiveSense>

 <nrOfSolutions>1</nrOfSolutions>

 <solverName>SCIP</solverName>

 <solverMsg>normal</solverMsg>

 <variablesDisplayOptions>(all)</variablesDisplayOptions>

 <constraintsDisplayOptions>(all)</constraintsDisplayOptions>

 </general>

 <solution idx="0" status="optimal" value="405">

 <variables>

 <variable idx="0" name="x[1]" type="C" activity="15" lowerBound="0"

upperBound="inf" marginal="0"/>

 <variable idx="1" name="x[2]" type="C" activity="10" lowerBound="0"

upperBound="inf" marginal="0"/>

 <variable idx="2" name="x[3]" type="C" activity="0" lowerBound="0"

upperBound="inf" marginal="-7"/>

 </variables>

 <linearConstraints>

 <constraint idx="0" name="res[1]" type="L" activity="175"

lowerBound="-inf" upperBound="175" marginal="1.4"/>

 <constraint idx="1" name="res[2]" type="L" activity="200"

CMPL 2.1.0 - Manual 145

lowerBound="-inf" upperBound="200" marginal="0.8"/>

 </linearConstraints>

 </solution>

</CmplSolutions>

 3.8.7 CmplMessages

CmplMessages is an XML-based format for representing the general status and/or errors of the transforma-

tion of a CMPL model in one of the described output files. CmplMessages is intended for communication with

other software that uses CMPL for modelling linear optimisation problems and can be obtained by the com-

mand line argument -cmsg [<file>].

It is also internally used for receiving CMPL messages from a CMPLServer.

An CmplMessages file consists of two major sections. The <general> section describes the general status

and the name of the model and a general message after the transformation. The <messages> section con-

sists of one or more messages about specific lines in the CMPL model.

The XSD is defined as follows:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

 <xs:element name="CmplMessages">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="general" minOccurs="1" maxOccurs="1"/>
 <xs:element ref="messages" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="version" use="required" type="xs:decimal"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="general">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="generalStatus" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="instanceName" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="message" type="xs:string" minOccurs="0" maxOccurs="1"/>

 <xs:element name="cmplVersion" type="xs:string" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="messages">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="message" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

CMPL 2.1.0 - Manual 146

 <xs:attribute name="numberOfMessages" use="required" type="xs:nonNegativeInteger"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="message">
 <xs:complexType>

<xs:attribute name="type" type="msgType" use="required"/>
<xs:attribute name="module" type="xs:string" use="required"/>
<xs:attribute name="location" type="xs:string" use="required"/>
<xs:attribute name="description" type="xs:string" use="required"/>

</xs:complexType>
 </xs:element>

 <xs:simpleType name="msgType">

<xs:restriction base="xs:string">
<xs:enumeration value="error"/>
<xs:enumeration value="warning"/>

</xs:restriction>
 </xs:simpleType>

</xs:schema>

After excecuting the given CMPL model, CMPL will finish without errors. The general status is repres-

ented in the following CmplMesages file test.cmsg.

<?xml version="1.0" encoding="UTF-8"?>

<CmplMessages version="1.2">

<general>

<instanceName>test.cmpl</instanceName>

<generalStatus>normal</generalStatus>

<message>cmpl finished normal</message>

<cmplVersion>2.0.0</cmplVersion>

</general>

</CmplMessages>

If a wrong symbol name for the matrix A (e.g. a) is used in line 10 , CMPL would be finish with errors rep-

resented in CmplMesages file test.cmsg.

<?xml version="1.0" encoding="UTF-8"?>

<CmplMessages version="1.2">

<general>

<instanceName>test.cmpl</instanceName>

<generalStatus>error</generalStatus>

<message>cmpl finished with errors</message>

<cmplVersion>2.0.0 (beta)</cmplVersion>

</general>

<messages numberOfMessages="1">

<message type ="error" module ="compile" location="test.cmpl:10.11,

CMPL 2.1.0 - Manual 147

called from: command line:$1" description="symbol 'a' is not

defined"/>

</messages>

</CmplMessages>

 4 CMPL's APIs

CMPL provides two APIs: pyCMPL for Python and jCMPL for Java.

The main idea of this APIs is to define sets and parameters within the user application, to start and control

the solving process and to read the solution(s) into the application if the problem is feasible. All variables,

objective functions and constraints are defined in CMPL. These functionalities can be used with a local CMPL

installation or a CMPLServer.

The structure and the classes including the methods and attributes are mostly identical or very similar in

both APIs. The main difference are the attributes of a class that can be obtained in pyCmpl by r/o attributes

and in jCMPL by getter methods.

 4.1 Creating Python and Java applications with a local CMPL installation

pyCMPL and jCMPL contain a couple of classes to connect a Python or Java application with CMPL as shown

in the figure below.

CMPL 2.1.0 - Manual 148

The classes CmplSet and CmplParameter are intended to define sets and parameters that can be used

with several Cmpl objects. With the Cmpl class it is possible to define a CMPL model, to commit sets and

parameters to this model, to start and control the solving process and to read the CMPL and solver mes -

sages and to have access to the solution(s) via CmplMessages and CmplSolutions objects.

To illustrate the formulation of a pyCmpl script and the corresponding java programme an example taken

from (Hillier/Liebermann 2010, p. 334f.) is used. Consider a simple assignment problem that deals with the

assignment of three machines to four possible locations. There is no work flow between the machines. The

total material handling costs are to be minimised. The hourly material handling costs per machine and loca-

tion are given in the following table.

Locations

1 2 3 4

Machines

1 13 16 12 11

2 15 - 13 20

3 5 7 10 6

The mathematical model

∑
(i , j)∈A

c ij⋅x ij →min!

s . t .

∑
(k , j)∈A

k=i

xkj=1 ; i=1(1)m

∑
(i , l)∈A

l= j

x il≤1 ; j=1(1)n

x ij∈{0,1} ;(i , j)∈A

with

Parameters
A - set of the possible combination of machines and locations
m - number of machines
n - number of locations
c ij - hourly material handling costs of machine i at location j
Variables
x ij - assignment variable of machine i at location j

can be formulated in CMPL as follows:

%data : machines set, locations set, A set[2], c[A]

var:
x[A]: binary;

obj:
costs: sum{ [i,j] in A : c[i,j]*x[i,j] } -> min ;

CMPL 2.1.0 - Manual 149

con:
{ i in machines: sos_m[i]: sum{ j in (A *> [i,*]) : x[i,j] } = 1; }
{ j in locations: sos_l[j]: sum{ i in (A *> [*,j]) : x[i,j] } <= 1; }

The interface for the sets and parameters provided by a pyCmpl script or jCMPL programme is the CMPL

header entry %data.

 4.1.1 pyCMPL

The first step to formulate this problem as a pyCmpl script after importing the pyCmpl package is to create a

Cmpl object where the argument of the constructor is the name of the CMPL file.

from pyCmpl import *

m = Cmpl("assignment.cmpl")

As in the %data entry two 1-tuple sets machines and locations and one 2-tuple set A are necessary for

the CMPL model. To create a CmplSet a name and for n-tuple sets with n>1 the rank are needed as argu-

ments for the constructor. The name has to be identical to the corresponding name in the CMPL header

entry %data. The set data is specified by the CmplSet method setValues. This is an overloaded method

with different arguments for several types of sets.

locations = CmplSet("locations")

locations.setValues(1,4)

machines = CmplSet("machines")

machines.setValues(1,3)

combinations = CmplSet("A", 2)

combinations.setValues([[1,1],[1,2],[1,3],[1,4], [2,1],[2,3],[2,4],\

 [3,1],[3,2],[3,3],[3,4]])

As shown in the listing above the set locations is assigned (1,2,..,4) and the set machines consists

of (1,2,3) because the first argument of setValues for this kind of sets is the starting value and the

second argument is the end value while the increment is by default equal to one. The values of the 2-tuple

set combinations are defined in the form of a list that consists of lists of valid combinations of machines

and locations.

For the definition of a CMPL parameter a user has to create a CmplParameter object where the first argu-

ment of the constructor is the name of the parameter. If the parameter is an array it is also necessary to

specify the set or sets through which the parameter array is defined. Therefore it is necessary to commit the

CmplSet combinations (beside the name "c") to create the CmplParameter array c .

c = CmplParameter("c",combinations)

c.setValues([13,16,12,11,15,13,20,5,7,10,6])

CmplSet objects and CmplParameter objects can be used in several CMPL models and have to be com-

mitted to a Cmpl model by the Cmpl methods setSets and setParameters. After this step the problem

can be solved by using the Cmpl method solve.

CMPL 2.1.0 - Manual 150

m.setSets(machines,locations,combinations)

m.setParameters(c)

m.solve()

After solving the model the status of CMPL and the invoked solver can be analysed through the Cmpl attrib-

utes solution.solverStatus and solution.cmplStatus.

print("Objective value: " , m.solution.value)

print("Objective status: " , m.solution.status)

If the problem is feasible and a solution is found it is possible to read the names, the types, the activities,

the lower and upper bounds and the marginal values of the variables and the constraints into the Python ap-

plication. The Cmpl attributes solution.variables and solution.constraints contain a list of

variable and constraint objects.

print("Variables:")

for v in m.solution.variables:

print(("%10s %3s %8i %8i %8i" % (v.name, v.type, v.activity, v.lowerBound,

v.upperBound)))

print("Constraints:")

for c in m.solution.constraints:

print(("%10s %3s %8.0f %8.0f %8.0f" % (c.name, c.type, c.activity,

c.lowerBound,c.upperBound)))

pyCmpl provides its own exception handling through the class CmplException that can be used in a try

and except block.

try:

...

except CmplException as e:

print(e.msg)

The entire pyCmpl script assignment.py shows as follows:

from pyCmpl import *

try:
m = Cmpl("assignment.cmpl")

locations = CmplSet("locations")
locations.setValues(1,4)

machines = CmplSet("machines")
machines.setValues(1,3)

combinations = CmplSet("A", 2)
combinations.setValues([[1,1],[1,2],[1,3],[1,4],[2,1],[2,3],[2,4],

[3,1],[3,2],[3,3],[3,4]])

c = CmplParameter("c",combinations)
c.setValues([13,16,12,11,15,13,20,5,7,10,6])

m.setSets(machines,locations,combinations)

CMPL 2.1.0 - Manual 151

m.setParameters(c)

m.solve()

print("Objective value: " , m.solution.value)
print("Objective status: " , m.solution.status)

print("Variables:")
for v in m.solution.variables:

print(("%10s %3s %8i %8i %8i" % (v.name, v.type, v.activity,
v.lowerBound,v.upperBound)))

print("Constraints:")
for c in m.solution.constraints:

print(("%10s %3s %8.0f %8.0f %8.0f" % (c.name, c.type, c.activity,
c.lowerBound,c.upperBound)))

except CmplException as e:
print(e.msg)

and can be executed by typing the command

python assignment.py

in the CmplShell and prints the following solution to stdOut.

Objective value: 29.0
Objective status: optimal
Variables:
 x[1,1] B 0 0 1
 x[1,2] B 0 0 1
 x[1,3] B 0 0 1
 x[1,4] B 1 0 1
 x[2,1] B 0 0 1
 x[2,3] B 1 0 1
 x[2,4] B 0 0 1
 x[3,1] B 1 0 1
 x[3,2] B 0 0 1
 x[3,3] B 0 0 1
 x[3,4] B 0 0 1
Constraints:
 sos_m[1] E 1 1 1
 sos_m[2] E 1 1 1
 sos_m[3] E 1 1 1
 sos_l[1] L 1 -inf 1
 sos_l[2] L 0 -inf 1
 sos_l[3] L 1 -inf 1
 sos_l[4] L 1 -inf 1

 4.1.2 jCMPL

To use the jCMPL functionalities a Java programme has to import jCMPL by import jCMPL.*; and to link

your application against jCmpl.jar and the following jar files, that you can find in the CMPL applicatiopn

folder in jCmpl/Libs or on GitHub (https://github.com/MikeSteglich/jCmpl).

CMPL 2.1.0 - Manual 152

https://github.com/MikeSteglich/jCmpl

The first step to formulate this problem as a jCmpl programme after importing the jCmpl package is to cre-

ate a Cmpl object where the argument of the constructor is the name of the CMPL file. Since jCMPL provides

it own exception handling the main method has to throw CmplExeptions.

import jCMPL.*;

public class Assignment {

 public static void main(String[] args) throws CmplException {

 try {

 Cmpl m = new Cmpl("assignment.cmpl");

As in pyCMPL to create a CmplSet a name and for n-tuple sets with n>1 the rank are needed as arguments

for the constructor whereby the name has to be identical to the corresponding name in the CMPL header

entry %data. The set data is specified by the CmplSet.setValues(). This is an overloaded method with

different arguments for several types of sets.

CmplSet locations = new CmplSet("locations");

locations.setValues(1, 4);

CmplSet machines = new CmplSet("machines");

machines.setValues(1, 3);

CmplSet combinations = new CmplSet("A", 2);

int[][] combiVals = {{1, 1}, {1, 2}, {1, 3}, {1, 4}, {2, 1},

{2, 3}, {2, 4}, {3, 1}, {3, 2}, {3, 3}, {3, 4}};

combinations.setValues(combiVals);

In the listing above the set locations is assigned (1,2,..,4) and the set machines consists of

(1,2,3). The first argument of setValues for this algorithmic sets is the starting value and the second

argument is the end value while the increment is by default equal to one. The values of the 2-tuple set com-

binations are defined in the form of a matrix of integers that consists all valid combinations of machines

and locations.

To create a CMPL parameter a user has to define a CmplParameter object whereby the first argument of

the constructor is the name of the parameter. For parameter arrays it is also necessary to specify the set or

sets through which the parameter array is defined. Therefore it is necessary to commit the CmplSet com-

binations (beside the name "c") to create the CmplParameter array c .

CmplParameter costs = new CmplParameter("c", combinations);

int[] costVals = {13, 16, 12, 11, 15, 13, 20, 5, 7, 10, 6};

costs.setValues(costVals);

In the next step the sets and parameters have to be committed to a Cmpl model by the Cmpl methods

setSets and setParameters and the problem can be solved by using the Cmpl method solve.

m.setSets(machines, locations, combinations);

m.setParameters(costs);

m.solve();

CMPL 2.1.0 - Manual 153

After solving the model the status of CMPL and the invoked solver can be analysed through the methods

Cmpl.solution().solverStatus()and Cmpl.solution().cmplStatus().

System.out.printf("Objective value: %f %n", m.solution().value());

System.out.printf("Objective status: %s %n", m.solution().status());

If the problem is feasible and a solution is found it is possible to read the names, the types, the activities,

the lower and upper bounds and the marginal values of the variables and the constraints into the Python ap-

plication. The methods Cmpl.solution().variables() and Cmpl.solution().constraints()

return a list of variable and constraint objects.

System.out.println("Variables:");

for (CmplSolElement v : m.solution().variables()) {

System.out.printf("%10s %3s %10d %10.0f %10.0f%n", v.name(), v.type(),

v.activity(), v.lowerBound(), v.upperBound());

}

System.out.println("Constraints:");

for (CmplSolElement c : m.solution().constraints()) {

System.out.printf("%10s %3s %10.0f %10.0f %10.0f%n", c.name(), c.type(),

c.activity(), c.lowerBound(), c.upperBound());

}

The entire jCmpl programme assignment.java shows as follows:

import jCMPL.*;

public class Assignment1 {

public static void main(String[] args) throws CmplException {

try {

Cmpl m = new Cmpl("assignment.cmpl");

CmplSet locations = new CmplSet("locations");

locations.setValues(1, 4);

CmplSet machines = new CmplSet("machines");

machines.setValues(1, 3);

CmplSet combinations = new CmplSet("A", 2);

int[][] combiVals = {{1, 1}, {1, 2}, {1, 3}, {1, 4},{2, 1}, {2, 3},

 {2, 4},{3, 1}, {3, 2}, {3, 3}, {3, 4}};

combinations.setValues(combiVals);

CmplParameter costs = new CmplParameter("c", combinations);

int[] costVals = {13, 16, 12, 11, 15, 13, 20, 5, 7, 10, 6};

costs.setValues(costVals);

m.setSets(machines, locations, combinations);

 m.setParameters(costs);

CMPL 2.1.0 - Manual 154

m.solve();

System.out.printf("Objective value: %f %n", m.solution().value());

System.out.printf("Objective status: %s %n", m.solution().status());

System.out.println("Variables:");

for (CmplSolElement v : m.solution().variables()) {

 System.out.printf("%10s %3s %10d %10.0f %10.0f%n", v.name(),

v.type(), v.activity(), v.lowerBound(), v.upperBound());

 }

System.out.println("Constraints:");

for (CmplSolElement c : m.solution().constraints()) {

System.out.printf("%10s %3s %10.0f %10.0f %10.0f%n", c.name(),

c.type(), c.activity(), c.lowerBound(), c.upperBound());

}

} catch (CmplException e) {

System.out.println(e);

}

}

}

and prints after starting the following solution to stdOut.

Objective value: 29.000000

Objective status: optimal

Variables:

 x[1,1] B 0 0 1

 x[1,2] B 0 0 1

 x[1,3] B 0 0 1

 x[1,4] B 1 0 1

 x[2,1] B 0 0 1

 x[2,3] B 1 0 1

 x[2,4] B 0 0 1

 x[3,1] B 1 0 1

 x[3,2] B 0 0 1

 x[3,3] B 0 0 1

 x[3,4] B 0 0 1

Constraints:

 sos_m[1] E 1 1 1

 sos_m[2] E 1 1 1

 sos_m[3] E 1 1 1

 sos_l[1] L 1 -Infinity 1

 sos_l[2] L 0 -Infinity 1

 sos_l[3] L 1 -Infinity 1

 sos_l[4] L 1 -Infinity 1

CMPL 2.1.0 - Manual 155

 4.2 Creating Python and Java applications using CMPLServer

The class Cmpl also provides the functionality to communicate with a CMPLServer or a CMPLGridScheduler

whereas it doesn't matter for the client whether it is connected to a single CMPLServer or to a CMPLGrid. As

shown in the figure below the first step to communicate with a CMPLServer is the Cmpl.connect method

that returns (if connected) a jobId. After connecting, a problem can be solved synchronously or asynchron-

ously.

The Cmpl method solve sends a CmplInstance string to the connected CMPLServer and waits for the

returning CmplSolutions, CmplMessages XML strings. After this synchronous process a user can ac-

cess the solution(s) if the problem is feasible or if not it can be analysed, whether the CMPL formulations or

the solver is the cause of the problem. To execute the solving process asynchronously the Cmpl methods

send, knock and retrieve have to be used. Cmpl.send sends a CmplInstance string to the CM-

PLServer and starts the solving process remotely. Cmpl.knock asks for a CMPL model with a given jobId

whether the solving process is finished or not. If the problem is finished the CmplSolutions and the Cm-

plMessages strings can be read into the user application with Cmpl.retrieve.

CMPL 2.1.0 - Manual 156

 4.2.1 pyCMPL

The first step to create a distributed optimisation application is to start the CMPLServer. Assuming that a

CMPLServer is running on 127.0.0.1:8008 the assignment problem can be solved remotely only by in-

cluding

m.connect("http://127.0.0.1:8008")

in the source code before Cmpl.solve is executed.

The pyCmpl script assignment-remote.py shows as follows:

from pyCmpl import *

try:

m = Cmpl("assignment.cmpl")

locations = CmplSet("locations")

locations.setValues(1,4)

machines = CmplSet("machines")

machines.setValues(1,3)

combinations = CmplSet("A", 2)

combinations.setValues([[1,1],[1,2],[1,3],[1,4], [2,1],[2,3],[2,4], [3,1],

[3,2],[3,3],[3,4]])

c = CmplParameter("c",combinations)

c.setValues([13,16,12,11,15,13,20,5,7,10,6])

m.setSets(machines,locations,combinations)

m.setParameters(c)

m.connect("http://127.0.0.1:8008")

m.solve()

print("Objective value: " , m.solution.value)

print("Objective status: " , m.solution.status)

print("Variables:")

for v in m.solution.variables:

print(("%10s %3s %8i %8i %8i" % (v.name, v.type, v.activity,

v.lowerBound,v.upperBound)))

print("Constraints:")

for c in m.solution.constraints:

print(("%10s %3s %8.0f %8.0f %8.0f" % (c.name, c.type, c.activity,

c.lowerBound,c.upperBound)))

CMPL 2.1.0 - Manual 157

except CmplException as e:

print(e.msg)

 4.2.2 jCMPL

The jCMPL programme assignment-remote.java shows as follows:

import jCMPL.*;

public class Assignment1 {

public static void main(String[] args) throws CmplException {

try {

Cmpl m = new Cmpl("assignment.cmpl");

CmplSet locations = new CmplSet("locations");

locations.setValues(1, 4);

CmplSet machines = new CmplSet("machines");

machines.setValues(1, 3);

CmplSet combinations = new CmplSet("A", 2);

int[][] combiVals = {{1, 1}, {1, 2}, {1, 3}, {1, 4},{2, 1}, {2, 3},

 {2, 4},{3, 1}, {3, 2}, {3, 3}, {3, 4}};

combinations.setValues(combiVals);

CmplParameter costs = new CmplParameter("c", combinations);

int[] costVals = {13, 16, 12, 11, 15, 13, 20, 5, 7, 10, 6};

costs.setValues(costVals);

m.setSets(machines, locations, combinations);

m.setParameters(costs);

m.connect("http://127.0.0.1:8008");

m.solve();

System.out.printf("Objective value: %f %n", m.solution().value());

System.out.printf("Objective status: %s %n", m.solution().status());

System.out.println("Variables:");

for (CmplSolElement v : m.solution().variables()) {

 System.out.printf("%10s %3s %10d %10.0f %10.0f%n", v.name(),

v.type(), v.activity(), v.lowerBound(), v.upperBound());

 }

System.out.println("Constraints:");

CMPL 2.1.0 - Manual 158

for (CmplSolElement c : m.solution().constraints()) {

System.out.printf("%10s %3s %10.0f %10.0f %10.0f%n", c.name(),

c.type(), c.activity(), c.lowerBound(), c.upperBound());

}

} catch (CmplException e) {

System.out.println(e);

}

}

}

 4.3 pyCMPL reference manual

 4.3.1 CmplSets

The class CmplSet is intended to define sets that can be used with several Cmpl objects.

Methods:

CmplSet(setName[,rank])

Description: Constructor

Parameter: str setName name of the set, Has to be equal to the corresponding name

in the CMPL model.

int rank optional - rank n for a n-tuple set (default 1)

Return: CmplSet object

CmplSet.setValues(setList)

Description: Defines the values of an enumeration set

Parameter: list setList for a set of n-tuples with n=1 - list of single indexing

entries int|long|str

for a set of n-tuples with n>1 - list of list(s) that contain

int|long|str tuples

Return: -

CmplSet.setValues(startNumber,endNumber)

Description: Defines the values of an algorithmic set
(startNumber, startNumber+1, ..., endNumber)

Parameter: int startNumber start value of the set

int endNumber end value of the set

Return: -

CMPL 2.1.0 - Manual 159

CmplSet.setValues(startNumber,step,endNumber)

Description: Defines the values of an algorithmic set
(startNumber, startNumber+step, ..., endNumber)

Parameter: int startNumber start value of the set

int step positive value for increment

negative value for decrement

Int endNumber end value of the set

Return: -

R/o attributes:

CmplSet.values

Description: List of the indexing entries of the set

Return: list of single indexing entries - for a set of n-tuples with n=1

of tuple(s) - for a set of n-tuples with n>1

CmplSet.name

Description: Name of the set

Return: str name of the CMPL set (not the name of the CmplSet object)

CmplSet.rank

Description: Rank of the set

Return: int number of n of a n-tuple set

CmplSet.len

Description: Length of the set

Return: int number of indexing entries

Examples:

s = CmplSet("s")

s.setValues(0,4)

print(s.rank)

print(s.len)

print(s.name)

print(s.values)

s is assigned s∈(0, 1,…, 4)

1

4

s

[0, 1, 2, 3, 4]

s = CmplSet("a")

s.setValues(10,-2,0)

print(s.rank)

s is assigned s∈(10,8 ,…, 0)

1

CMPL 2.1.0 - Manual 160

print(s.len)

print(s.name)

print(s.values)

6

s

[10, 8, 6, 4, 2, 0]

s = CmplSet("FOOD")

s.setValues(["BEEF","CHK","FISH"])

print(s.rank)

print(s.len)

print(s.name)

print(s.values)

s is assigned s∈(' BEEF ' , ' CHK ' , ' FISH ')

1

3

FOOD

['BEEF', 'CHK', 'FISH']

s = CmplSet("c",3)

s.setValues([[1,1,1], [1,1,2], \

[1,2,1]])

print(s.rank)

print(s.len)

print(s.name)

print(s.values)

s is assigned a 3-tuple set of integers

3

3

c

[(1, 1, 1), (1, 1, 2), (1, 2, 1)]

 4.3.2 CmplParameters

The class CmplParameters is intended to define parameters that can be used with several Cmpl objects.

Methods:

CmplParameter(paramName [,set1,set2,...])

Description: Constructor

Parameter: str paramName name of the parameter

Has to be equal to the corresponding name in the CMPL

model.

CmplSet

set1,set2,...
optional - set or sets through which the parameter array is

defined (default None)

Return: CmplParameter object

CmplParameter.setValues(val)

Description: Defines the values of a scalar parameter

Parameter: int|long|float|

str val
value of the scalar parameter

Return: -

CmplParameter.setValues(valList)

Description: Defines the values of a parameter array

CMPL 2.1.0 - Manual 161

Parameter: list valList list of int|long|float|str|list - value list of the

parameter array

Return: -

R/o attributes:

CmplParameter.values

Description: List of the values of a parameter

Return: list of int|long|float|str|list | dict - value list of the parameter array

CmplParameter.value

Description: Value of a scalar parameter

Return: int|long|float|str - value of the scalar parameter

CmplParameter.setList

Description: List of sets through which the parameter array is defined

Return: list of CmplSet objects through which the parameter array is defined

CmplParameter.name

Description: Name of the parameter

Return: str - name of the CMPL parameter (not the name of the CmplParameter object)

CmplParameter.rank

Description: Rank of the parameter

Return: int - rank of the CMPL parameter

CmplParameter.len

Description: Length of the parameter array

Return: long - number of elements in the parameter array

Examples:

p = CmplParameter("p")

p.setValues(2)

print(p.values)

print(p.value)

print(p.name)

print(p.rank)

print(p.len)

p is assigned 2

[2]

2

p

0

1

s = CmplSet("s")

s.setValues(0,4)

p = CmplParameter("p",s)

p.setValues([1,2,3,4,5])
p is assigned (1,2 ,…,5)

CMPL 2.1.0 - Manual 162

print(p.values)

print(p.name)

print(p.rank)

print(p.len)

[1, 2, 3, 4, 5]

p

1

5

products = CmplSet("products")

products.setValues(1,3)

machines = CmplSet("machines")

machines.setValues(1,2)

a=CmplParameter("a",machines, products)

a.setValues([[8,15,12],[15,10,8]])

print(a.values)

print(a.name)

print(a.rank)

print(a.len)

for e in a.setList:

print(e.values)

a is assigned a 2X3 matrix of integers

[[8, 15, 12], [15, 10, 8]]

a

2

6

[1, 2]

[1, 2, 3]

s = CmplSet("s",2)

s.setValues([[1,1],[2,2]])

p = CmplParameter("p",s)

p.setValues([1,1])

prin(t p.values)

print(p.name)

print(p.rank)

print(p.len)

s is assigned the indices of a matrix diagonal

s is assigned a 2x2 identity matrix

[1, 1]

p

2

2

combinations = CmplSet("A", 2)

combinations.setValues([(1,1),(1,2),\

(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),\

(3,2),(3,3),(3,4)])

costs = {(1,1):13,(1,2):16,(1,3):12, \

(1,4):11, (2,1):15,(2,3):13,(2,4):20, \

(3,1):5,(3,2):7,(3,3):10,(3,4):6}

c = CmplParameter("c",combinations)

c.setValues(costs)

Creates a CmplSet object and assigns a 2-tuple

set to it.

Creates a dictionary with keys corresponding to

the combinations above and costs as values .

The dict costs is assigned as values for the Cm-

plParameter c.

CMPL 2.1.0 - Manual 163

 4.3.3 Cmpl

With the Cmpl class it is possible to define a CMPL model, to commit sets and parameters to this model, to

start and control the solving process and to read the CMPL and solver messages and to have access to the

solution(s) via CmplMessages and CmplSolutions objects.

 4.3.3.1 Establishing models

Methods:

Cmpl(name)

Description: Constructor

Parameter: str name filename of the CMPL model

Return: Cmpl object

Cmpl.setSets(set1[,set2,...])

Description: Committing CmplSet objects to the Cmpl model

Parameter: CmplSet

set1[,set2,...]
CmplSet object(s)

Return: -

Cmpl.setParameters(par1[,par2,...])

Description: Committing CmplParameter objects to the Cmpl model

Parameter: CmplParameter

par1[,par2,...]
CmplParameter object(s)

Return: -

Examples:

m = Cmpl("prodmix.cmpl")

products = CmplSet("products")

products.setValues(1,3)

machines = CmplSet("machines")

machines.setValues(1,2)

c = CmplParameter("c",products)

c.setValues([75,80,50])

b = CmplParameter("b",machines)

b.setValues([1000,1000])

a = CmplParameter("a",machines, products)

CMPL 2.1.0 - Manual 164

a.setValues([[8,15,12],[15,10,8]])

m.setSets(products,machines)

m.setParameters(c,a,b)

Commits the sets products, machines to

the Cmpl object m

Commits the parameter c,a,b to the Cmpl ob-

ject m

 4.3.3.2 Manipulating models

Methods:

Cmpl.setOption(option)

Description: Sets a CMPL, display or solver option

Parameter: str option option in CmplHeader syntax

Return: int option id

Cmpl.delOption(optId)

Description: Deletes an option

Parameter: int optId option id

Return: -

Cmpl.delOptions()

Description: Deletes all options

Parameter: -

Return: -

Cmpl.setOutput(ok[,leadString]])

Description: Turns the output of CMPL and the invoked solver on or off

Parameter: bool ok True|False

str leadString optional - Leading string for the output (default - model

name)

Return: -

Cmpl.setRefreshTime(rTime)

Description: Refresh time for getting the output of CMPL and the invoked solver from a

CMPLServer if the model is solved synchronously.

Parameter: float rTime refresh time in seconds (default 0.1)

Return: -

R/o attributes:

CMPL 2.1.0 - Manual 165

Cmpl.refreshTime

Description: Returns the refresh time for getting the output of CMPL and the invoked solver from

a CMPLServer if the model is solved synchronously.

Return: float Refresh time

Examples:

m = Cmpl("assignment.cmpl")

c1=m.setOption("-display nonZeros")

m.setOption("-solver cplex")

m.setOption("-display solutionPool")

m.delOption(c1)

m.delOptions()

Setting some options

Deletes the first option

Deletes all options

m = Cmpl("assignment.cmpl")

m.setOutput(True)

m.setOutput(True,"my special model")

The stdOut and stdErr of CMPL and the invoked

solver are shown for the Cmpl object m.

As above but the output starts with the leading

string "my special model>".

m = Cmpl("assignment.cmpl")

m.connect("http://194.95.45.70:8008")

m.setOutput(True)

m.setRefreshTime(1)

The stdOut and stdErr of CMPL and the invoked

solver located at the specified CMPLServer will be

refreshed every second.

 4.3.3.3 Solving models

Methods:

Cmpl.solve()

Description: Solves a Cmpl model either with a local installed CMPL or if the model is connected

with a CMPLServer remotely.

Parameter: -

Return: - The status of the model and the solver can be obtained by

the attributes cmplStatus, cmplStatusText,solver-

Status and solverStatusText.

Cmpl.start()

CMPL 2.1.0 - Manual 166

Description: Solves a Cmpl model in a separate thread either with a local installed CMPL or if the

model is connected with a CMPLServer remotely.

Parameter: -

Return: - The status of the model and the solver can be obtained by

the attributes cmplStatus, cmplStatusText,solver-

Status and solverStatusText.

Cmpl.join()

Description: Waits until the solving thread terminates.

Parameter: -

Return: - The status of the model and the solver can be obtained by

the attributes cmplStatus, cmplStatusText,solver-

Status and solverStatusText.

Cmpl.isAlive()

Description: Return whether the thread is alive

Parameter: -

Return: bool True or False - return whether the thread is alive or not

Cmpl.connect(cmplUrl)

Description: Connects a CMPLServer or CMPLGridScheduler under cmplUrl - first step of solv-

ing a model on a CMPLServer remotely

Parameter: str cmplUrl URL of the CMPLServer or CMPLGridScheduler

Return: - The status of the model can be obtained by the attributes

cmplStatus and cmplStatusText.

Cmpl.disconnect()

Description: Disconnects the connected CMPLServer or CMPLGridScheduler

Parameter: -

Return: - The status of the model can be obtained by the attributes

cmplStatus and cmplStatusText.

Cmpl.send()

Description: Sends the Cmpl model instance to the connected CMPLServer - first step of solving a

model on a CMPLServer asynchronously (after connect())

Parameter: -

Return: - The status of the model can be obtained by the attributes

cmplStatus and cmplStatusText.

CMPL 2.1.0 - Manual 167

Cmpl.knock()

Description: Knocks on the door of the connected CMPLServer or CMPLGridScheduler and asks

whether the model is finished - second step of solving a model on a CMPLServer

asynchronously

Parameter: -

Return: - The status of the model can be obtained by the attributes
cmplStatus and cmplStatusText.

Cmpl.retrieve()

Description: Retrieves the Cmpl solution(s) if possible from the connected CMPLServer - last step

of solving a model on a CMPLServer asynchronously

Parameter: -

Return: - The status of the model and the solver can be obtained by

the attributes cmplStatus, cmplStatusText,solver-

Status and solverStatusText.

Cmpl.cancel()

Description: Cancels the Cmpl solving process on the connected CMPLServer

Parameter: -

Return: - The status of the model can be obtained by the attributes

cmplStatus and cmplStatusText.

Cmpl.setMaxServerQueuingTime(time)

Description: Sets the maximum queuing time

Parameter: float time

Return: -

Cmpl.setMaxServerTries(nr)

Description: Sets the maximum tries of unsuccessful server calls

Parameter: int nr

Return: -

R/o attributes:

Cmpl.cmplStatus

Description: Returns the CMPL related status of the Cmpl object

Return: int CMPL_UNKNOWN = 0

CMPL_OK = 1

CMPL_WARNINGS = 2

CMPL_FAILED = 3

CMPLSERVER_OK = 6

CMPL 2.1.0 - Manual 168

CMPLSERVER_ERROR = 7

CMPLSERVER_BUSY = 8

CMPLSERVER_CLEANED = 9

CMPLSERVER_WARNING = 10

PROBLEM_RUNNING = 11

PROBLEM_FINISHED = 12

PROBLEM_CANCELED = 13

PROBLEM_NOTRUNNING = 14

CMPLGRID_SCHEDULER_UNKNOWN = 15

CMPLGRID_SCHEDULER_OK = 16

CMPLGRID_SCHEDULER_ERROR = 17

CMPLGRID_SCHEDULER_BUSY = 18

CMPLGRID_SCHEDULER_SOLVER_NOT_AVAILABLE = 19

CMPLGRID_SCHEDULER_WARNING = 20

CMPLGRID_SCHEDULER_PROBLEM_DELETED = 21

Cmpl.cmplStatusText

Description: Returns the CMPL related status text of the Cmpl object

Return: str CMPL_UNKNOWN

CMPL_OK

CMPL_WARNINGS

CMPL_FAILED

CMPLSERVER_OK

CMPLSERVER_ERROR

CMPLSERVER_BUSY

CMPLSERVER_CLEANED

CMPLSERVER_WARNING

PROBLEM_RUNNING

PROBLEM_FINISHED

PROBLEM_CANCELED

PROBLEM_NOTRUNNING

CMPLGRID_SCHEDULER_UNKNOWN

CMPLGRID_SCHEDULER_OK

CMPLGRID_SCHEDULER_ERROR

CMPLGRID_SCHEDULER_BUSY

CMPLGRID_SCHEDULER_SOLVER_NOT_AVAILABLE

CMPLGRID_SCHEDULER_WARNING

CMPLGRID_SCHEDULER_PROBLEM_DELETED

Cmpl.solverStatus

Description: Returns the solver related status of the Cmpl object

Return: int SOLVER_OK = 4

SOLVER_FAILED = 5

CMPL 2.1.0 - Manual 169

Cmpl.solverStatusText

Description: Returns the solver related status text of the Cmpl object

Return: str SOLVER_OK

SOLVER_FAILED

Cmpl.jobId

Description: Returns the jobId of the Cmpl problem at the connected CMPLServer

Return: str string of the jobId
Cmpl.maxServerQueuingTime

Description: Returns the maximum queuing time

Return: float Max time

Cmpl.maxServerTries

Description: Returns the maximum server tries

Return: int Max tries

Examples:

m = Cmpl("assignment.cmpl")

m.solve()
Solves the Cmpl object m locally

m = Cmpl("assignment.cmpl")

m.connect("http://194.95.45.70:8008")

m.solve()

Solves the Cmpl object m remotely and syn-

chronously on the specified CMPLServer

m = Cmpl("assignment.cmpl")

m.connect("http://194.95.45.70:8008")

m.send()

m.knock()

m.retrieve()

Solves the Cmpl object m remotely and asyn-

chronously on the specified CMPLServer

models= []

models.append(Cmpl("m1.cmpl"))

models.append(Cmpl("m2.cmpl"))

models.append(Cmpl("m3.cmpl"))

for m in models:

m.start()

for m in models:

m.join()

Starts all models in separate threads.

Waits until the all solving threads are terminated.

m = Cmpl("assignment.cmpl")

m.solve()

if m.solverstatus!=SOLVER_OK:

m.solutionReport()
Displays the optimal solution if the solver didn't

fail.

CMPL 2.1.0 - Manual 170

 4.3.3.4 Reading solutions

Methods:

Cmpl.solutionReport()

Description: Writes a standard solution report to stdOut

Parameter: -

Return: -

Cmpl.saveSolution([solFileName])

Description: Saves the solution(s) as CmplSolutions file

Parameter: str solFileName optional file name (default <modelname>.csol)

Return: -

Cmpl.saveSolutionAscii([solFileName])

Description: Saves the solution(s) as ASCII file

Parameter: str solFileName optional file name (default <modelname>.sol)

Return: -

Cmpl.saveSolutionCsv([solFileName])

Description: Saves the solution(s) as CSV file

Parameter: str solFileName optional file name (default <modelname>.csv)

Return: -

Access to variables and constraints

After a problem has been solved and a solution obtained, each variable and constraint can be accessed by

its name defined in the Cmpl model as attributes of the CMPL object. Each of these newly created attributes

returns a CmplSolution object.

R/o attributes:

Cmpl.nrOfVariables

Description: Returns the number of variables of the generated and solved CMPL model

Return: int number of variables

Cmpl.nrOfConstraints

Description: Returns the number of constraints of the generated and solved CMPL model

Return: int number of constraints

Cmpl.objectiveName

CMPL 2.1.0 - Manual 171

Description: Returns the name of the objective function of the generated and solved CMPL model

Return: str objective name

Cmpl.objectiveSense

Description: Returns the objective sense of the generated and solved CMPL model

Return: str objective sense

Cmpl.nrOfSolutions

Description: Returns the number of solutions of the generated and solved CMPL model

Return: int number of solutions

Cmpl.solver

Description: Returns the name of the invoked solver of the generated and solved CMPL model

Return: str invoked solver

Cmpl.solverMessage

Description: Returns the message of the invoked solver of the generated and solved CMPL model

Return: str message of the invoked solver

Cmpl.varDisplayOptions

Description: Returns a string with the display options for the variables of the generated and

solved CMPL model

Return: str display options for the variables

Cmpl.conDisplayOptions

Description: Returns a string with the display options for the constraints of the generated and

solved CMPL model

Return: str display options for the constraints

Cmpl.solution

Description: Returns the first (optimal) CmplSolutions object

Return: CmplSolutions first (optimal) solution

Cmpl.solutionPool

Description: Returns a list of CmplSolutions objects

Return: list of CmplSolu-

tions objects

 list of CmplSolution object for solutions found

CMPL 2.1.0 - Manual 172

CmplSolutions.status

Description: Returns a string with the status of the current solution provided by the invoked solver

Return: str solution status

CmplSolutions.value

Description: Returns the value of the objective function of the current solution

Return: float objective function value

CmplSolutions.idx

Description: Returns the index of the current solution

Return: int index of the current solution

CmplSolutions.variables

Description: Returns a list of CmplSolElement objects for the variables of the current solution

Return: list of CmplSol-

Line objects

list of variables

CmplSolutions.constraints

Description: Returns a list of CmplSolElement objects for the constraints of the current solution

Return: list of

CmplSolElement

objects

list of constraints

CmplSolElement.idx

Description: Index of the variable or constraint

Return: int index of the variable or constraint

CmplSolElement.name

Description: Name of the variable or constraint

Return: str name of the variable or constraint

CmplSolElement.type

Description: Type of the variable or constraint

Return: str type of the variable or constraint

C|I|B for variables

L|E|G for constraints

CmplSolElement.activity

Description: Activity of the variable or constraint

Return: long|float activity of the variable or constraint

CMPL 2.1.0 - Manual 173

CmplSolElement.lowerBound

Description: Lower bound of the variable or constraint

Return: float lower bound of the variable or constraint

CmplSolElement.upperBound

Description: Upper bound of the variable or constraint

Return: float upper bound of the variable or constraint

CmplSolElement.marginal

Description: Marginal value (shadow prices or reduced costs) bound of the variable or constraint

Return: float marginal value of the variable or constraint

Examples:

m = Cmpl("assignment.cmpl")

...

m.solve()

print(m.solver)

print(m.solverMessage)

print(m.nrOfVariables)

print(m.nrOfConstraints)

print(m.varDisplayOptions)

print(m.conDisplayOptions)

print(m.objectiveName)

print(m.objectiveSense)

print(m.solution.value)

print(m.solution.status)

print(m.nrOfSolutions)

print(m.solution.idx)

Solves the example from subchapter 4.1 and

displays some information about the gener-

ated and solved model

CBC

11

7

(all)

(all)

costs

min

29.0

optimal

1

0

for v in m.solution.variables:

print(v.idx,v.name, v.type, \

v.activity,v.lowerBound, v.upperBound)

Displays all information about variables and

constraints of the optimal solution

Variables:

0 x[1,1] B 0 0.0 1.0

1 x[1,2] B 0 0.0 1.0

2 x[1,3] B 0 0.0 1.0

3 x[1,4] B 1 0.0 1.0

4 x[2,1] B 0 0.0 1.0

5 x[2,3] B 1 0.0 1.0

CMPL 2.1.0 - Manual 174

for c in m.solution.constraints:

print(c.idx, c.name, c.type, \

c.activity,c.lowerBound, c.upperBound)

6 x[2,4] B 0 0.0 1.0

7 x[3,1] B 1 0.0 1.0

8 x[3,2] B 0 0.0 1.0

9 x[3,3] B 0 0.0 1.0

10 x[3,4] B 0 0.0 1.0

Constraints:
0 sos_m[1] E 1.0 1.0 1.0

1 sos_m[2] E 1.0 1.0 1.0

2 sos_m[3] E 1.0 1.0 1.0

3 sos_l[1] L 1.0 -inf 1.0

4 sos_l[2] L 0.0 -inf 1.0

5 sos_l[3] L 1.0 -inf 1.0

6 sos_l[4] L 1.0 -inf 1.0

m = Cmpl("assignment.cmpl")

...

m.setOption("-display nonZeros")

m.setOption("-solver cplex")

m.setOption("-display solutionPool")

m.setOutput(True)

m.solve()

for s in m.solutionPool:

print("\nSolution number: " , s.idx+1)

print("Objective value: " , s.value)

print("Objective status: " , s.status)

print("Variables:")

for v in s.variables:

print("%10s %3s %8i %8i %8i" % \

 (v.name,v.type,v.activity, \

v.lowerBound, v.upperBound))

print("Constraints:")

for c in s.constraints:

print("%10s %3s %8.0f %8.0f %8.0f" \

%(c.name,c.type,c.activity, \

c.lowerBound,c.upperBound))

Solves the example from subchapter 4.1 and

displays all information about variables and

constraints of all solutions found

Solution number: 1
Objective value: 29.0

Objective status: integer optimal solu-

tion

Variables:

 x[1,4] B 1 0 1

 x[2,3] B 1 0 1

 x[3,1] B 1 0 1

Constraints:

 sos_m[1] E 1 1 1

 sos_m[2] E 1 1 1

 sos_m[3] E 1 1 1

 sos_l[1] L 1 -inf 1

 sos_l[3] L 1 -inf 1

 sos_l[4] L 1 -inf 1

Solution number: 2

Objective value: 29.0

Objective status: integer feasible solu-

tion

Variables:

 x[1,4] B 1 0 1

 x[2,3] B 1 0 1

 x[3,1] B 1 0 1

Constraints:

 sos_m[1] E 1 1 1

 sos_m[2] E 1 1 1

 sos_m[3] E 1 1 1

 sos_l[1] L 1 -inf 1

 sos_l[3] L 1 -inf 1

 sos_l[4] L 1 -inf 1

Solution number: 3

Objective value: 33.0

CMPL 2.1.0 - Manual 175

Objective status: integer feasible solu-

tion

Variables:

 x[1,1] B 1 0 1

 x[2,3] B 1 0 1

 x[3,2] B 1 0 1

Constraints:

 sos_m[1] E 1 1 1

 sos_m[2] E 1 1 1

 sos_m[3] E 1 1 1

 sos_l[1] L 1 -inf 1

 sos_l[2] L 1 -inf 1

 sos_l[3] L 1 -inf 1

for s in m.solutionPool:

print("Variables:"

for c in combinations.values:

print(m.x[c].name,m.x[c].type, \

m.x[c].activity,\

m.x[c].lowerBound,\

m.x[c].upperBound)

print("Constraints:"

for i in m.sos_m:

print(m.sos_m[i].name,\

m.sos_m[i].type, \

m.sos_m[i].activity,\

m.sos_m[i].lowerBound,\

m.sos_m[i].upperBound)

for j in m.sos_l:

print(m.sos_l[j].name,\

m.sos_l[j].type,\

m.sos_l[j].activity,\

m.sos_l[j].lowerBound,\

m.sos_l[j].upperBound)

As above but with direct access to the vari-

able and constraint by their names.

Iterates the variables x[i,j] over the value

list of the CmplSet object combinations

Iterates over the internal list of the indexing

entries of the constraints with the name
sos_m

Iterates over the internal list of the indexing

entries of the constraints with the name
sos_l

 4.3.3.5 Reading CMPL messages

R/o attributes:

Cmpl.cmplMessages

Description: Returns a list of CmplMsg objects that contain the CMPL messages

Return: list of CmplMsg

objects

list of CMPL messages

CMPL 2.1.0 - Manual 176

CmplMsg.type

Description: Returns the type of the messages

Return: str message type warning|error

CmplMsg.module

Description: Returns the name of the CMPL module in that the error or warning occurs

Return: str CMPL module name

CmplMsg.location

Description: Returns the location where the error or warning occurs

Return: str location

CmplMsg.description

Description: Returns a description of the error or warning message

Return: str description of the error or warning

Examples:

model = Cmpl("diet.cmpl")

...

model.solve()

if model.cmplStatus==CMPL_WARNINGS:

for m in model.cmplMessages:

print(m.type, \

m.module,\

m.location, \

m.description)

If some warnings for the CMPL model

diet.cmpl appear the messages will be shown.

 4.3.4 CmplExceptions

pyCMPL provides its own exception handling. If an error occurs either by using pyCmpl classes or in the

CMPL model a CmplException is raised by pyCmpl automatically. This exception can be handled through

using a try-except block.

try:

do something

except CmplException as e:

print(e.msg)

CMPL 2.1.0 - Manual 177

 4.4 jCMPL reference manual

To use the jCMPL functionalities a Java programme has to import jCMPL by import jCMPL.*; and to link

your application against jCmpl.jar and the following jar files, that you can find in the CMPL applicatiopn

folder in jCmpl/lib or on GitHub (https://github.com/MikeSteglich/jCmpl).

 4.4.1 CmplSets

The class CmplSet is intended to define sets that can be used with several Cmpl objects.

Setter methods:

CmplSet(setName[,rank])

Description: Constructor

Parameter: String setName name of the set

Has to be equal to the corresponding name in the CMPL

model.

int rank optional - rank n for a n-tuple set (default 1)

Return: CmplSet object

CmplSet.setValues(setList)

Description: Defines the values of an enumeration set

Parameter: Object setList for a set of n-tuples with n=1 - List|Array of single index-

ing entries int|Integer|long|Long|String

for a set of n-tuples with n>1 – 2-dimensional List|Array

that contain int|Integer|long|Long|String tuples

Return: -

CmplSet.setValues(startNumber,endNumber)

Description: Defines the values of an algorithmic set
(startNumber, startNumber+1, ..., endNumber)

Parameter: int startNumber start value of the set

int endNumber end value of the set

Return: -

CmplSet.setValues(startNumber,step,endNumber)

Description: Defines the values of an algorithmic set
(startNumber, startNumber+step, ..., endNumber)

Parameter: int startNumber start value of the set

int step positive value for increment

negative value for decrement

CMPL 2.1.0 - Manual 178

https://github.com/MikeSteglich/jCmpl

int endNumber end value of the set

Return: -

Getter methods:

CmplSet.values()

Description: List of the indexing entries of the set

Return: List | Array of

Object
one-dimensional List or Array of single int|Integer|

long|Long|String - for a set of n-tuples with n=1

two-dimensional List or Array of int|Integer|long|

Long|String - for a set of n-tuples with n>1
CmplSet.name()

Description: Name of the set

Return: String name of the CMPL set (not the name of the CmplSet object)

CmplSet.rank()

Description: Rank of the set

Return: int number of n of a n-tuple set

CmplSet.len()

Description: Length of the set

Return: int number of indexing entries

Examples:

CmplSet s = new CmplSet("s");

s.setValues(0,4);

System.out.println(s.rank());

System.out.println(s.len());

System.out.println(s.name());

System.out.println(s.values());

s is assigned s∈(0, 1,…, 4)

1

5

s

[0, 1, 2, 3, 4]

CmplSet s = new CmplSet("a");

s.setValues(10,-2,0);

System.out.println(s.rank());

System.out.println(s.len());

System.out.println(s.name());

System.out.println(s.values());

s is assigned s∈(10,8 ,…, 0)

1

6

a

[10, 8, 6, 4, 2, 0]

CmplSet s = new CmplSet("FOOD");

Sring[] sVals

= {"BEEF","CHK","FISH"};

s.setValues(sVals); s is assigned s∈(' BEEF ' , ' CHK ' , ' FISH ')

CMPL 2.1.0 - Manual 179

System.out.println(s.rank());

System.out.println(s.len());

System.out.println(s.name());

for (String e: (String[]) s.values())

System.out.println(e);

1

3

FOOD

BEEF

CHK

FISH

CmplSet s = new CmplSet("FOOD");

ArrayList nutrLst =

 new ArrayList<String>();

nutrLst.add("BEEF");

nutrLst.add("CHK");

nutrLst.add("FISH");

s.setValues(nutrLst);

System.out.println(s.rank());

System.out.println(s.len());

System.out.println(s.name());

System.out.println(s.values());

s is assigned s∈(' BEEF ' , ' CHK ' , ' FISH ')

1

3

FOOD

[BEEF, CHK, FISH]

CmplSet s = new CmplSet("c",3);

int[][] sVals = { {1,1,1}, {1,1,2},

{1,2,1} };

s.setValues(sVals);

System.out.println(s.rank());

System.out.println(s.len());

System.out.println(s.name());

for (int i=0; i<s.len(); i++) {

 for (int j=0; j<s.rank(); j++)

System.out.print(s.get(i,j));

}

s is assigned a 3-tuple set of integers

3

3

c

111

112

121

 4.4.2 CmplParameters

The class CmplParameters is intended to define parameters that can be used with several Cmpl objects.

Setter methods:

CmplParameter(paramName"[,set1,set2,...])

Description: Constructor

Parameter: String paramName name of the parameter

CMPL 2.1.0 - Manual 180

Has to be equal to the corresponding name in the CMPL

model.

CmplSet

set1,set2,...
optional - set or sets through which the parameter array is

defined (default None)

Return: CmplParameter object

CmplParameter.setValues(val)

Description: Defines the values of a scalar parameter

Parameter: int|Integer|

long|Long|float|

Float|double|

Double|String

val

value of the scalar parameter

Return: -

CmplParameter.setValues(vals)

Description: Defines the values of a parameter array

Parameter: Object vals one- our multidimensional List|Array of int|Integer|
long|Long|float|Float|double|Double|String

Return: -

Getter methods:

CmplParameter.values()

Description: List of the values of a parameter

Return: Object - one- our multidimensional List|Array of int|Integer|long|

Long|float|Float|double|Double|String - value list of the parameter array

CmplParameter.value()

Description: Value of a scalar parameter

Return: int|Integer|long|Long|float|Float|double|Double|String - value of

the scalar parameter

CmplParameter.setList()

Description: List of sets through which the parameter array is defined

Return: list of CmplSet objects through which the parameter array is defined

CmplParameter.name()

Description: Name of the parameter

Return: String - name of the CMPL parameter (not the name of the CmplParameter ob-

ject)

CMPL 2.1.0 - Manual 181

CmplParameter.rank()

Description: Rank of the parameter

Return: int - rank of the CMPL parameter

CmplParameter.len()

Description: Length of the parameter array

Return: long number of elements in the parameter array

Examples:

CmplParameter p = new CmplParameter("p");

p.setValues(2);

System.out.println(p.values());

System.out.println(p.value());

System.out.println(p.name());

System.out.println(p.rank());

System.out.println(p.len());

p is assigned 2

2

2

p

0

1

CmplSet s = new CmplSet("s");

s.setValues(0,4);

CmplParameter p = new CmplParameter("p",s);

int[] pVals = { 1,2,3,4,5 };

p.setValues(pVals);

for (int val : (int[])p.values())

System.out.println(val);

System.out.println(p.name());

System.out.println(p.rank());

System.out.println(p.len());

p is assigned (1,2 ,…,5)

1

2

3

4

5

p

1

5

CmplSet products = new CmplSet("products");

products.setValues(1,3);

CmplSet machines = new CmplSet("machines");

machines.setValues(1,2);

CmplParameter a = new

 CmplParameter("a",machines,products);

int[][] aVals = { {8,15,12}, {15,10,8} };

a.setValues(aVals); a is assigned a 2X3 matrix of integers

CMPL 2.1.0 - Manual 182

for (int i=0; i<machines.len(); i++) {

 for (int j=0; j<products.len(); j++)

 System.out.print(" " +

 ((int[][])a.values())[i][j]);

 System.out.println();

}

System.out.println(a.name());

System.out.println(a.rank());

System.out.println(a.len());

for (CmplSet s : a.setList())

 System.out.println(s.values());

 8 15 12

 15 10 8

a

2

6

[1, 2]

[1, 2, 3]

CmplSet s = new CmplSet("s",2);

int[][] sVals = { {1,1}, {2,2} };

s.setValues(sVals);

CmplParameter p = new CmplParameter("p",s);

int[] pVals = { 1 , 1} ;

p.setValues(pVals);

for (int val : (int[])p.values())

System.out.println(val);

System.out.println(a.name());

System.out.println(a.rank());

System.out.println(a.len());

s is assigned the indices of a matrix

diagonal

s is assigned a 2x2 identity matrix

1

1

p

2

2

 4.4.3 Cmpl

With the Cmpl class it is possible to define a CMPL model, to commit sets and parameters to this model, to

start and control the solving process and to read the CMPL and solver messages and to have access to the

solution(s) via CmplMessages and CmplSolutions objects.

 4.4.3.1 Establishing models

Setter methods:

Cmpl(name)

Description: Constructor

Parameter: String name filename of the CMPL model

Return: Cmpl object

CMPL 2.1.0 - Manual 183

Cmpl.setSets(set1[,set2,...])

Description: Committing CmplSet objects to the Cmpl model

Parameter: CmplSet

set1[,set2,...]
CmplSet object(s)

Return: -

Cmpl.setParameters(par1[,par2,...])

Description: Committing CmplParameter objects to the Cmpl model

Parameter: CmplParameter

par1[,par2,...]
CmplParameter object(s)

Return: -

Examples:

Cmpl m = new Cmpl("prodmix.cmpl");

CmplSet products =

new CmplSet("products");

products.setValues(1,3);

mplSet machines = new CmplSet("machines");

machines.setValues(1,2);

CmplParameter c =

new CmplParameter("c",products);

int[] cVals = {75,80,50};

c.setValues(cVals);

CmplParameter b =

 new CmplParameter("b",machines);

int[] bVals = {1000,1000};

b.setValues(bVals);

CmplParameter a =

 new CmplParameter("a",machines,products);

int[][] aVals = { {8,15,12}, {15,10,8} };

a.setValues(aVals);

m.setSets(products,machines);

m.setParameters(c,a,b);

Commits the sets products,machines

to the Cmpl object m

Commits the parameter c,a,b to the

Cmpl object m

CMPL 2.1.0 - Manual 184

 4.4.3.2 Manipulating models

Setter methods:

Cmpl.setOption(option)

Description: Sets a CMPL, display or solver option

Parameter: String option option in CmplHeader syntax

Return: int option id

Cmpl.delOption(optId)

Description: Deletes an option

Parameter: Int optId option id

Return: -

Cmpl.delOptions()

Description: Deletes all options

Parameter: -

Return: -

Cmpl.setOutput(ok[,leadStr]])

Description: Turns the output of CMPL and the invoked solver on or off

Parameter: boolean ok true|false

String leadStr optional - Leading string for the output (default - model

name)

Return: -

Cmpl.setRefreshTime(rTime)

Description: Refresh time for getting the output of CMPL and the invoked solver from a CM-

PLServer if the model is solved synchronously.

Parameter: long rTime refresh time in milliseconds (default 400)

Return: -

Getter methods:

Cmpl.refreshTime()

Description: Returns the refresh time for getting the output of CMPL and the invoked solver from

a CMPLServer if the model is solved synchronously.

Return: long Refresh time in milliseconds

CMPL 2.1.0 - Manual 185

Examples:

Cmpl m = new Cmpl("assignment.cmpl");

long c1=m.setOption("%display nonZeros");

m.setOption("%arg -solver cplex");

m.setOption("%display solutionPool");

m.delOption(c1);

m.delOptions();

Setting some options

Deletes the first option

Deletes all options

Cmpl m = new Cmpl("assignment.cmpl");

m.setOutput(True);

m.setOutput(True,"my special model");

The stdOut and stdErr of CMPL and the invoked

solver are shown for the Cmpl object m.

As above but the output starts with the leading

string "my special model>".

Cmpl m = new Cmpl("assignment.cmpl");

m.connect("http://194.95.45.70:8008");

m.setOutput(True);

m.setRefreshTime(500);

The stdOut and stdErr of CMPL and the in-

voked solver located at the specified CMPLServer

will be refreshed every 500 millisecond.

 4.4.3.3 Solving models

Setter Methods:

Cmpl.solve()

Description: Solves a Cmpl model either with a local installed CMPL or if the model is connected

with a CMPLServer remotely.

Parameter: -

Return: - status of the model and the solver can be obtained by the

methods cmplStatus, cmplStatusText,solverStatus

and solverStatusText

Cmpl.start()

Description: Solves a Cmpl model in a separate thread either with a local installed CMPL or if the

model is connected with a CMPLServer remotely.

Parameter: -

Return: - status of the model and the solver can be obtained by the

methods cmplStatus, cmplStatusText,solverStatus

and solverStatusText

CMPL 2.1.0 - Manual 186

Cmpl.join()

Description: Waits until the solving thread terminates.

Parameter: -

Return: - status of the model and the solver can be obtained by the

methods cmplStatus, cmplStatusText,solverStatus

and solverStatusText

Cmpl.isAlive()

Description: Return whether the thread is alive

Parameter: -

Return: boolean true or false - return whether the thread is alive or not

Cmpl.connect(cmplUrl)

Description: Connects a CMPLServer or CMPLGridScheduler under cmplUrl - first step of solv-

ing a model on a CMPLServer remotely

Parameter: String cmplUrl URL of the CMPLServer or CMPLGridScheduler

Return: -

Cmpl.disconnect()

Description: Disconnects the connected CMPLServer or CMPLGridScheduler

Parameter: -

Return: -

Cmpl.send()

Description: Sends the Cmpl model instance to the connected CMPLServer - first step of solving a

model on a CMPLServer asynchronously (after connect())

Parameter: -

Return: - status of the model can be obtained by the methods cm-

plStatus and cmplStatusText

Cmpl.knock()

Description: Knocks on the door of the connected CMPLServer or CMPLGridScheduler and asks

whether the model is finished - second step of solving a model on a CMPLServer

asynchronously

Parameter: -

Return: - status of the model can be obtained by the methods

cmplStatus and cmplStatusText

CMPL 2.1.0 - Manual 187

Cmpl.retrieve()

Description: Retrieves the Cmpl solution(s) if possible from the connected CMPLServer - last step

of solving a model on a CMPLServer asynchronously

Parameter: -

Return: - status of the model and the solver can be obtained by the

methods cmplStatus, cmplStatusText,solverStatus

and solverStatusText

Cmpl.cancel()

Description: Cancels the Cmpl solving process on the connected CMPLServer

Parameter: -

Return: - status of the model can be obtained by the methods

cmplStatus and cmplStatusText

Getter methods:

Cmpl.cmplStatus()

Description: Returns the CMPL related status of the Cmpl object

Return: int CMPL_UNKNOWN = 0

CMPL_OK = 1

CMPL_WARNINGS = 2

CMPL_FAILED = 3

CMPLSERVER_OK = 6

CMPLSERVER_ERROR = 7

CMPLSERVER_BUSY = 8

CMPLSERVER_CLEANED = 9

CMPLSERVER_WARNING = 10

PROBLEM_RUNNING = 11

PROBLEM_FINISHED = 12

PROBLEM_CANCELED = 13

PROBLEM_NOTRUNNING = 14

CMPLGRID_SCHEDULER_UNKNOWN = 15

CMPLGRID_SCHEDULER_OK = 16

CMPLGRID_SCHEDULER_ERROR = 17

CMPLGRID_SCHEDULER_BUSY = 18

CMPLGRID_SCHEDULER_SOLVER_NOT_AVAILABLE = 19

CMPLGRID_SCHEDULER_WARNING = 20

CMPLGRID_SCHEDULER_PROBLEM_DELETED = 21

Cmpl.cmplStatusText()

Description: Returns the CMPL related status text of the Cmpl object

Return: String CMPL_UNKNOWN

CMPL_OK

CMPL 2.1.0 - Manual 188

CMPL_WARNINGS

CMPL_FAILED

CMPLSERVER_OK

CMPLSERVER_ERROR

CMPLSERVER_BUSY

CMPLSERVER_CLEANED

CMPLSERVER_WARNING

PROBLEM_RUNNING

PROBLEM_FINISHED

PROBLEM_CANCELED

PROBLEM_NOTRUNNING

CMPLGRID_SCHEDULER_UNKNOWN

CMPLGRID_SCHEDULER_OK

CMPLGRID_SCHEDULER_ERROR

CMPLGRID_SCHEDULER_BUSY

CMPLGRID_SCHEDULER_SOLVER_NOT_AVAILABLE

CMPLGRID_SCHEDULER_WARNING

CMPLGRID_SCHEDULER_PROBLEM_DELETED

Cmpl.solverStatus()

Description: Returns the solver related status of the Cmpl object

Return: int SOLVER_OK = 4

SOLVER_FAILED = 5

Cmpl.solverStatusText()

Description: Returns the solver related status text of the Cmpl object

Return: String SOLVER_OK

SOLVER_FAILED

Cmpl.jobId()

Description: Returns the jobId of the Cmpl problem at the connected CMPLServer

Return: String string of the jobId

Cmpl.output()

Description: Returns the output of CMPL and the invoked solver.

Intended to use if an application needs to parse the output.

Return: String string of output of CMPL and the invoked solver

Examples:

Cmpl m = new Cmpl("assignment.cmpl");

m.solve();
Solves the Cmpl object m locally

Cmpl m = new Cmpl("assignment.cmpl");

m.connect("http://127.0.0.1:8008");
Solves the Cmpl object m remotely and syn-

CMPL 2.1.0 - Manual 189

m.solve(); chronously on the specified CMPLServer

Cmpl m = new Cmpl("assignment.cmpl");

m.connect("http://127.0.0.1:8008");

m.send();

m.knock();

m.retrieve();

Solves the Cmpl object m remotely and asyn-

chronously on the specified CMPLServer

ArrayList<Cmpl> models =

 new ArrayList<Cmpl>();

models.add(new Cmpl("m1.cmpl"));

models.add(new Cmpl("m2.cmpl"));

models.add(new Cmpl("m3.cmpl"));

for (Cmpl c : models)

c.start();

for (Cmpl c : models)

c.join();

Starts all models in separate threads.

Waits until the all solving threads are terminated.

Cmpl m = new Cmpl("assignment.cmpl");

m.solve();

if (m.solverStatus() == Cmpl.SOLVER_OK)

m.solutionReport();
Displays the optimal solution if the solver didn't

fail.

 4.4.3.4 Reading solutions

Setter methods:

Cmpl.solutionReport()

Description: Writes a standard solution report to stdOut

Parameter: -

Return: -

Cmpl.saveSolution([solFileName])

Description: Saves the solution(s) as CmplSolutions file

Parameter: String solFile-

Name
optional file name (default <modelname>.csol)

Return: -

CMPL 2.1.0 - Manual 190

Cmpl.saveSolutionAscii([solFileName])

Description: Saves the solution(s) as ASCII file

Parameter: String solFile-

Name
optional file name (default <modelname>.sol)

Return: -

Cmpl.saveSolutionCsv([solFileName])

Description: Saves the solution(s) as CSV file

Parameter: String solFile-

Name
optional file name (default <modelname>.csv)

Return: -

Getter methods:

Cmpl.nrOfVariables()

Description: Returns the number of variables of the generated and solved CMPL model

Return: long number of variables

Cmpl.nrOfConstraints()

Description: Returns the number of constraints of the generated and solved CMPL model

Return: long number of constraints

Cmpl.objectiveName()

Description: Returns the name of the objective function of the generated and solved CMPL model

Return: String objective name

Cmpl.objectiveSense()

Description: Returns the objective sense of the generated and solved CMPL model

Return: String objective sense

Cmpl.nrOfSolutions()

Description: Returns the number of solutions of the generated and solved CMPL model

Return: int number of solutions

Cmpl.solver()

Description: Returns the name of the invoked solver of the generated and solved CMPL model

Return: String invoked solver

CMPL 2.1.0 - Manual 191

Cmpl.solverMessage()

Description: Returns the message of the invoked solver of the generated and solved CMPL model

Return: String message of the invoked solver

Cmpl.varDisplayOptions()

Description: Returns a string with the display options for the variables of the generated and

solved CMPL model

Return: String display options for the variables

Cmpl.conDisplayOptions()

Description: Returns a string with the display options for the constraints of the generated and

solved CMPL model

Return: String display options for the constraints

Cmpl.solution()

Description: Returns the first (optimal) CmplSolutions object

Return: CmplSolutions first (optimal) solution

Cmpl.solutionPool()

Description: Returns a list of CmplSolutions objects

Return: List of CmplSolu-

tions objects

 list of CmplSolution object for solutions found

CmplSolutions.status()

Description: Returns a string with the status of the current solution provided by the invoked solver

Return: String solution status

CmplSolutions.value()

Description: Returns the value of the objective function of the current solution

Return: double objective function value

CmplSolutions.idx()

Description: Returns the index of the current solution

Return: int index of the current solution

CmplSolutions.variables()

Description: Returns a list of CmplSolElement objects for the variables of the current solution

Return: ArrayList<Cm-

plSolElement>
list of variables

CMPL 2.1.0 - Manual 192

CmplSolutions.constraints()

Description: Returns a list of CmplSolElement objects for the constraints of the current solution

Return: ArrayList<Cm-

plSolElement>
list of constraints

Cmpl.getVarByName(name, [solIdx])

Description: Returns a CmplSolElement object or CmplSolArray of CmplSolElement ob-

jects for the variable or variable array with the specified name

Parameter: String name

int solIdx
name of the variable or variable array

optional solution index (default 0)

Return: Object

CmplSolElement for a single variable

CmplSolArray for a variable array

Cmpl.getConByName([solIdx])

Description: Returns a CmplSolElement object or CmplSolArray of CmplSolElement ob-

jects for the constraint or constraint array with the specified name

Parameter: String name

int solIdx
name of the constraint or constraint array

optional solution index (default 0)

Return: Object CmplSolElement for a single constraint

CmplSolArray for a constraint array

CmplSolElement.idx()

Description: Index of the variable or constraint

Return: int index of the variable or constraint

CmplSolElement.name()

Description: Name of the variable or constraint

Return: String name of the variable or constraint

CmplSolElement.type()

Description: Type of the variable or constraint

Return: String type of the variable or constraint

C|I|B for variables

L|E|G for constraints

CmplSolElement.activity()

Description: Activity of the variable or constraint

Return: Object Double|Long Activity of the variable or constraint

CMPL 2.1.0 - Manual 193

CmplSolElement.lowerBound()

Description: Lower bound of the variable or constraint

Return: double lower bound of the variable or constraint

CmplSolElement.upperBound()

Description: Upper bound of the variable or constraint

Return: double upper bound of the variable or constraint

CmplSolElement.marginal()

Description: Marginal value (shadow prices or reduced costs) bound of the variable or constraint

Return: double marginal value of the variable or constraint

Examples:

Cmpl m = new Cmpl("assignment.cmpl");

...

m.solve();

System.out.printf("%s\n",m.solver());

System.out.printf("%s\n",m.solverMessage());

System.out.printf("%d\n",m.nrOfVariables());

System.out.printf("%d\n",m.nrOfConstraints());

System.out.printf("%s\n",m.varDisplayOptions());

System.out.printf("%s\n",m.conDisplayOptions());

System.out.printf("%s\n",m.objectiveName());

System.out.printf("%s\n",m.objectiveSense());

System.out.printf("%f\n",m.solution().value());

System.out.printf("%s\n",m.solution().status());

System.out.printf("%d\n",m.nrOfSolutions());

System.out.printf("%d\n",m.solution().idx());

Solves the example from subchapter

4.1 and displays some information

about the generated and solved

model

CBC

11

7

(all)

(all)

costs

min

29.000000

optimal

1

0

for (CmplSolElement v : m.solution().variables())

{

 System.out.printf("%8s %2s %2d %2.0f %2.0f%n",

v.name(), v.type(),v.activity(),

v.lowerBound(),v.upperBound());

}

Displays all information about vari-

ables and constraints of the optimal

solution

Variables:
 x[1,1] B 0 0 1

 x[1,2] B 0 0 1

 x[1,3] B 0 0 1

 x[1,4] B 1 0 1

 x[2,1] B 0 0 1

 x[2,3] B 1 0 1

 x[2,4] B 0 0 1

 x[3,1] B 1 0 1

CMPL 2.1.0 - Manual 194

for (CmplSolElement c:m.solution().constraints())

{

 System.out.printf("%8s %2s %2.0f %2.0f %2.0f

%n", c.name(), c.type(),c.activity(),

c.lowerBound(),c.upperBound());

}

 x[3,2] B 0 0 1

 x[3,3] B 0 0 1

 x[3,4] B 0 0 1

Constraints:
sos_m[1] E 1 1 1

sos_m[2] E 1 1 1

sos_m[3] E 1 1 1

sos_l[1] L 1 -Infinity 1

sos_l[2] L 0 -Infinity 1

sos_l[3] L 1 -Infinity 1

sos_l[4] L 1 -Infinity 1

CmplSolArray x = (CmplSolArray)

m.getVarByName("x");

for(int[] tuple: (int[][]) combinations.values())

{ System.out.printf("%5s %2d %n",

x.get(tuple).name(),

x.get(tuple).activity());

}

Direct access to the variable vector

x[] by its name

Cmpl m = new Cmpl("assignment.cmpl");

...

m.setOption("%display nonZeros");

m.setOption("%arg -solver cplex");

m.setOption("%display solutionPool");

m.solve();

for (CmplSolution s : m.solutionPool()) {

System.out.printf("Solution number: %d %n",

(s.idx() + 1));

System.out.printf("Objective value: %f %n",

s.value());

System.out.printf("Objective status: %s %n",

s.status());

System.out.println("Variables:");

for (CmplSolElement v : s.variables()) {

System.out.printf("%8s %2s %2d %2.0f %2.0f

%n", v.name(), v.type(), v.activity(),

v.lowerBound(), v.upperBound());

 }

System.out.println("Constraints:");

for (CmplSolElement c : s.constraints()) {

System.out.printf("%8s %2s %2.0f %2.0f %2.0f

%n", c.name(), c.type(), c.activity(),

c.lowerBound(), c.upperBound());

Solves the example from subchapter

4.1 and displays all information about

variables and constraints of all solu-

tion found

Solution number: 1

Objective value: 29.000000

Objective status: integer

optimal solution

Variables:

 x[1,4] B 1 0 1

 x[2,3] B 1 0 1

 x[3,1] B 1 0 1

Constraints:

sos_m[1] E 1 1 1

sos_m[2] E 1 1 1

sos_m[3] E 1 1 1

sos_l[1] L 1 -Infinity 1

sos_l[3] L 1 -Infinity 1

CMPL 2.1.0 - Manual 195

 }

}

sos_l[4] L 1 -Infinity 1

Solution number: 2

Objective value: 29.000000

Objective status: integer

feasible solution

Variables:

 x[1,4] B 1 0 1

 ...

 4.4.3.5 Reading CMPL messages

Getter methods:

Cmpl.cmplMessages()

Description: Returns a list of CmplMsg objects that contain the CMPL messages

Return: ArrayList<

CmplMsg>
list of CMPL messages

CmplMsg.type()

Description: Returns the type of the messages

Return: String message type warning|error

CmplMsg.module()

Description: Returns the name of the CMPL module in that the error or warning occurs

Return: String CMPL module

CmplMsg.location()

Description: Returns the location where the error or warning occurs

Return: String location

CmplMsg.description()

Description: Returns the a description of the error or warning message

Return: String description of the error or warning

Examples:

model = Cmpl("diet.cmpl")

...

model.solve();

if (model.cmplStatus()==Cmpl.CMPL_WARNINGS) {

for (CmplMsg m: model.cmplMessages()) {

System.out.printf("%s %s %s %s %s",

If some warnings for the CMPL model

diet.cmpl appear the messages will be

shown.

CMPL 2.1.0 - Manual 196

m.type(), m.module(), m.location(),

m.description());

}

}

 4.4.4 CmplExceptions

jCMPL provides its own exception handling. If an error occurs either by using jCmpl classes or in the CMPL

model a CmplException is raised by jCmpl automatically. This exception can be handled through using a

try-catch block.

try {

// do something

} catch (CmplException e) {

 System.out.println(e);

}

 4.5 Examples

 4.5.1 The diet problem

 4.5.1.1 Problem description and CMPL model

In this subchapter the jCMPL and jCMPL formulation of the diet problem already discussed in subchapter

 2.4.1.1 is dealt with.

The first step is to formulate the CMPL model diet.cmpl where the sets and parameters that are created

in the pyCmpl script have to be specified in the CMPL header entry %data:

%data : NUTR set, FOOD set, costs[FOOD], vitamin[NUTR,FOOD], vitMin[NUTR]

var:

x[FOOD]: integer[2..10];

obj:

cost: costs^T * x->min;

con:

vit: vitamin * x >= vitMin;

 4.5.1.2 pyCMPL

The corresponding pyCMPL script diet.py is formulated as follows:

from pyCmpl import *

CMPL 2.1.0 - Manual 197

try:

model = Cmpl("diet.cmpl")

nutr = CmplSet("NUTR")

nutr.setValues(["A", "B1", "B2", "C"])

food = CmplSet("FOOD")

food.setValues(["BEEF","CHK","FISH","HAM","MCH","MTL","SPG","TUR"])

costs = CmplParameter("costs",food)

costs.setValues([3.19, 2.59, 2.29, 2.89, 1.89, 1.99, 1.99, 2.49])

vitmin = CmplParameter("vitMin",nutr)

vitmin.setValues([700, 700, 700, 700])

vitamin = CmplParameter("vitamin",nutr, food)

vitamin.setValues ([[60,8,8,40,15,70,25,60] , [20,0,10,40,35,30,50,20] , \

[10,20,15,35,15,15,25,15] ,[15,20,10,10,15,15,15,10]])

model.setSets(nutr,food)

model.setParameters(costs,vitmin,vitamin)

model.solve()

model.solutionReport()

except CmplException as e:

print(e.msg)

Executing this pyCMPL model by using the command:

python diet.py

leads to the following output created by pyCMPL's standard solution report:

Problem diet.cmpl

Nr. of variables 8

Nr. of constraints 4

Objective name cost

Solver name HIGHS

Display variables (all)

Display constraints (all)

Objective status optimal

Objective value 101.14 (min!)

Variables

Name Type Activity LowerBound UpperBound Marginal

x[BEEF] I 2 2.00 10.00 -

x[CHK] I 8 2.00 10.00 -

x[FISH] I 2 2.00 10.00 -

x[HAM] I 2 2.00 10.00 -

CMPL 2.1.0 - Manual 198

x[MCH] I 10 2.00 10.00 -

x[MTL] I 10 2.00 10.00 -

x[SPG] I 10 2.00 10.00 -

x[TUR] I 2 2.00 10.00 -

Constraints

Name Type Activity LowerBound UpperBound Marginal

vit[A] G 1500.00 700.00 inf -

vit[B1] G 1330.00 700.00 inf -

vit[B2] G 860.00 700.00 inf -

vit[C] G 700.00 700.00 inf -

 4.5.1.3 jCmpl

The corresponding jCMPL programme diet.java is formulated as follows:

import jCMPL.*;

public class Diet {

public static void main(String[] args) throws CmplException {

try {

Cmpl model = new Cmpl("diet.cmpl");

CmplSet nutr = new CmplSet("NUTR");

String[] nutrLst = {"A", "B1", "B2", "C"};

nutr.setValues(nutrLst);

CmplSet food = new CmplSet("FOOD");

String[] foodLst = {"BEEF", "CHK", "FISH", "HAM", "MCH",

 "MTL", "SPG", "TUR"};

food.setValues(foodLst);

CmplParameter costs = new CmplParameter("costs", food);

Double[] costVec = {3.19, 2.59, 2.29, 2.89, 1.89, 1.99, 1.99, 2.49};

costs.setValues(costVec);

CmplParameter vitmin = new CmplParameter("vitMin", nutr);

int [] vitminVec = { 700,700,700,700};

vitmin.setValues(vitminVec);

CmplParameter vitamin = new CmplParameter("vitamin", nutr, food);

int[][] vitMat = { {60, 8, 8, 40, 15, 70, 25, 60},

{20, 0, 10, 40, 35, 30, 50, 20},

{10, 20, 15, 35, 15, 15, 25, 15},

{15, 20, 10, 10, 15, 15, 15, 10}};

vitamin.setValues(vitMat);

CMPL 2.1.0 - Manual 199

model.setSets(nutr, food);

model.setParameters(costs, vitmin, vitamin);

model.solve();

model.solutionReport();

} catch (CmplException e) {

System.out.println(e);

}

}

}

Executing this jCMPL programme leads to the following output created by jCMPL's standard solution report:

Problem diet.cmpl

Nr. of variables 8

Nr. of constraints 4

Objective name cost

Solver name HIGHS

Display variables (all)

Display vonstraints (all)

Objective status optimal

Objective value 101.14 (min!)

Variables

Name Type Activity LowerBound UpperBound Marginal

x[BEEF] I 2 2.00 10.00 -

x[CHK] I 8 2.00 10.00 -

x[FISH] I 2 2.00 10.00 -

x[HAM] I 2 2.00 10.00 -

x[MCH] I 10 2.00 10.00 -

x[MTL] I 10 2.00 10.00 -

x[SPG] I 10 2.00 10.00 -

x[TUR] I 2 2.00 10.00 -

Constraints

Name Type Activity LowerBound UpperBound Marginal

line[A] G 1500.00 700.00 Infinity -

line[B1] G 1330.00 700.00 Infinity -

line[B2] G 860.00 700.00 Infinity -

line[C] G 700.00 700.00 Infinity -

 4.5.2 Transportation problem

 4.5.2.1 Problem description and CMPL model

This subchapter discusses the pyCMPL formulation of the transportation problem from subchapter 2.4.1.7 .

CMPL 2.1.0 - Manual 200

The CMPL model transportation.cmpl can be formulated as follows:

%data : plants set, centers set,routes set[2], c[routes], s[plants], d[centers]

var:

 x[routes]: real[0..];

obj:

 costs: sum{ [i,j] in routes : c[i,j]*x[i,j] } ->min;

con:

 {i in plants : supplies[i]: sum{j in routes *> [i,*] : x[i,j]} = s[i];}

 {j in centers: demands[j]: sum{i in routes *> [*,j] : x[i,j]} <= d[j];}

 4.5.2.2 pyCMPL

The corresponding pyCMPL script transportation.py is formulated as follows:

from pyCmpl import *

try:

model = Cmpl("transportation.cmpl")

routes = CmplSet("routes",2)

routes.setValues([[1,1],[1,2],[1,4],[2,2],[2,3],[2,4],[3,1],[3,3]])

plants = CmplSet("plants")

plants.setValues(1,3)

centers = CmplSet("centers")

centers.setValues(1,4)

costs = CmplParameter("c",routes)

costs.setValues([3,2,6,5,2,3,2,4])

s = CmplParameter("s",plants)

s.setValues([5000,6000,2500])

d = CmplParameter("d",centers)

d.setValues([6000,4000,2000,2500])

model.setSets(routes, plants, centers)

model.setParameters(costs,s,d)

model.setOutput(True)

model.setOption("-display nonZeros")

model.solve()

CMPL 2.1.0 - Manual 201

if model.solverStatus == SOLVER_OK:

model.solutionReport()

else:

print("Solver failed " + model.solver + " " + model.solverMessage)

except CmplException as e:

print(e.msg)

Executing this pyCMPL model by using the command:

python transportation.py

leads to the following output of CMPL and HiGHS (enabled with model.setOutput(True)) and the stand-

ard solution report:
transportation>

transportation> CMPL version: 2.1.0

transportation> Authors: Thomas Schleiff, Mike Steglich

transportation> Distributed under the GPLv3

transportation>

transportation> CMPL: Interpreting Cmpl code

transportation> CMPL: Writing model instance to Free-MPS file > /var/tmp/tmp.5.XFsNgN.mps

transportation> CMPL: Solving instance using HIGHS

transportation> Running HiGHS 1.7.2 (git hash: n/a): Copyright (c) 2024 HiGHS under MIT licence terms

transportation> Number of PL entries in BOUNDS section is 8

transportation> LP tmp.5.XFsNgN has 7 rows; 8 cols; 16 nonzeros

transportation> Coefficient ranges:

transportation> Matrix [1e+00, 1e+00]

transportation> Cost [2e+00, 6e+00]

transportation> Bound [0e+00, 0e+00]

transportation> RHS [2e+03, 6e+03]

transportation> Presolving model

transportation> 6 rows, 7 cols, 14 nonzeros 0s

transportation> 6 rows, 7 cols, 14 nonzeros 0s

transportation> Presolve : Reductions: rows 6(-1); columns 7(-1); elements 14(-2)

transportation> Solving the presolved LP

transportation> Using EKK dual simplex solver - serial

transportation> Iteration Objective Infeasibilities num(sum)

transportation> 0 5.0000000000e+03 Pr: 2(11000) 0s

transportation> 5 3.6500000000e+04 Pr: 0(0) 0s

transportation> Solving the original LP from the solution after postsolve

transportation> Model status : Optimal

transportation> Simplex iterations: 5

transportation> Objective value : 3.6500000000e+04

transportation> HiGHS run time : 0.00

transportation> Writing the solution to /var/tmp/tmp.5.XFsNgN.sol

transportation>

transportation>

transportation> CMPL: Retrieving solution

transportation> CMPL: Writing solution to CmplSolution file > transportation_cmpl__px8sb1ck.csol

transportation> CMPL: Writing CmplMessages to file > transportation_cmpl__px8sb1ck.cmsg

Problem transportation.cmpl

Nr. of variables 8

Nr. of constraints 7

Objective name costs

Solver name HIGHS

Display variables nonZeroVariables (all)

Display constraints nonZeroConstraints (all)

Objective status OPTIMAL

CMPL 2.1.0 - Manual 202

Objective value 36500.00 (min!)

Variables

Name Type Activity LowerBound UpperBound Marginal

x[1,1] C 2500.00 0.00 inf 0.00

x[1,2] C 2500.00 0.00 inf 0.00

x[2,2] C 1500.00 0.00 inf 0.00

x[2,3] C 2000.00 0.00 inf 0.00

x[2,4] C 2500.00 0.00 inf 0.00

x[3,1] C 2500.00 0.00 inf 0.00

Constraints

Name Type Activity LowerBound UpperBound Marginal

supplies[1] E 5000.00 5000.00 5000.00 3.00

supplies[2] E 6000.00 6000.00 6000.00 6.00

supplies[3] E 2500.00 2500.00 2500.00 2.00

demands[1] L 5000.00 -inf 6000.00 0.00

demands[2] L 4000.00 -inf 4000.00 -1.00

demands[3] L 2000.00 -inf 2000.00 -4.00

demands[4] L 2500.00 -inf 2500.00 -3.00

 4.5.2.3 jCMPL

The corresponding jCMPL script transportation.java is formulated as follows:

import jCMPL.*;

import java.util.ArrayList;

public class Transportation {

public static void main(String[] args) throws CmplException {

try {

Cmpl model = new Cmpl("transportation.cmpl");

CmplSet routes = new CmplSet("routes", 2);

int[][] arcs = { {1, 1}, {1, 2}, {1, 4}, {2, 2}, {2, 3},

{2, 4}, {3, 1}, {3, 3}};

routes.setValues(arcs);

CmplSet plants = new CmplSet("plants");

plants.setValues(1, 3);

CmplSet centers = new CmplSet("centers");

centers.setValues(1, 1, 4);

CmplParameter costs = new CmplParameter("c", routes);

Integer[] costArr = {3, 2, 6, 5, 2, 3, 2, 4};

costs.setValues(costArr);

CMPL 2.1.0 - Manual 203

CmplParameter s = new CmplParameter("s", plants);

int[] sList = {5000,6000,2500};

s.setValues(sList);

CmplParameter d = new CmplParameter("d", centers);

int[] dArr = {6000, 4000, 2000, 2500};

d.setValues(dArr);

model.setSets(routes, plants, centers);

model.setParameters(costs, s, d);

model.setOutput(true);

model.setOption("-display nonZeros");

model.solve();

if (model.solverStatus() == Cmpl.SOLVER_OK) {

model.solutionReport();

} else {

System.out.println("Solver failed " + model.solver() +

" " + model.solverMessage());

}

} catch (CmplException e) {

 System.out.println(e);

}

}

}

Executing this jCMPL programme leads to the following output of CMPL and HiGHS (enabled with model.-

setOutput(True)) and the standard solution report:

transportation>

transportation> CMPL version: 2.1.0

transportation> Authors: Thomas Schleiff, Mike Steglich

transportation> Distributed under the GPLv3

transportation>

transportation> CMPL: Interpreting Cmpl code

transportation> CMPL: Writing model instance to Free-MPS file > /var/tmp/tmp.5.XFsNgN.mps

transportation> CMPL: Solving instance using HIGHS

transportation> Running HiGHS 1.7.2 (git hash: n/a): Copyright (c) 2024 HiGHS under MIT licence terms

transportation> Number of PL entries in BOUNDS section is 8

transportation> LP tmp.5.XFsNgN has 7 rows; 8 cols; 16 nonzeros

transportation> Coefficient ranges:

transportation> Matrix [1e+00, 1e+00]

transportation> Cost [2e+00, 6e+00]

transportation> Bound [0e+00, 0e+00]

transportation> RHS [2e+03, 6e+03]

transportation> Presolving model

transportation> 6 rows, 7 cols, 14 nonzeros 0s

transportation> 6 rows, 7 cols, 14 nonzeros 0s

transportation> Presolve : Reductions: rows 6(-1); columns 7(-1); elements 14(-2)

CMPL 2.1.0 - Manual 204

transportation> Solving the presolved LP

transportation> Using EKK dual simplex solver - serial

transportation> Iteration Objective Infeasibilities num(sum)

transportation> 0 5.0000000000e+03 Pr: 2(11000) 0s

transportation> 5 3.6500000000e+04 Pr: 0(0) 0s

transportation> Solving the original LP from the solution after postsolve

transportation> Model status : Optimal

transportation> Simplex iterations: 5

transportation> Objective value : 3.6500000000e+04

transportation> HiGHS run time : 0.00

transportation> Writing the solution to /var/tmp/tmp.5.XFsNgN.sol

transportation>

transportation>

transportation> CMPL: Retrieving solution

transportation> CMPL: Writing solution to CmplSolution file > transportation_cmpl__px8sb1ck.csol

transportation> CMPL: Writing CmplMessages to file > transportation_cmpl__px8sb1ck.cmsg

Problem transportation.cmpl

Nr. of variables 8

Nr. of constraints 7

Objective name costs

Solver name HIGHS

Display variables nonZeroVariables (all)

Display constraints nonZeroConstraints (all)

Objective status OPTIMAL

Objective value 36500.00 (min!)

Variables

Name Type Activity LowerBound UpperBound Marginal

x[1,1] C 2500.00 0.00 inf 0.00

x[1,2] C 2500.00 0.00 inf 0.00

x[2,2] C 1500.00 0.00 inf 0.00

x[2,3] C 2000.00 0.00 inf 0.00

x[2,4] C 2500.00 0.00 inf 0.00

x[3,1] C 2500.00 0.00 inf 0.00

Constraints

Name Type Activity LowerBound UpperBound Marginal

supplies[1] E 5000.00 5000.00 5000.00 3.00

supplies[2] E 6000.00 6000.00 6000.00 6.00

supplies[3] E 2500.00 2500.00 2500.00 2.00

demands[1] L 5000.00 -inf 6000.00 0.00

demands[2] L 4000.00 -inf 4000.00 -1.00

demands[3] L 2000.00 -inf 2000.00 -4.00

demands[4] L 2500.00 -inf 2500.00 -3.00

 4.5.3 The shortest path problem

 4.5.3.1 Problem description and CMPL model

Consider an undirected network G =(V,A) where V is a set of nodes and A is a set of directed edges joining

pairs of nodes. The decision is to find the shortest path from a starting node s to a target node t. This prob-

lem can be formulated as an LP as follows (Hillier and Liebermann 2010, p. 383f.):

CMPL 2.1.0 - Manual 205

∑
(i , j)∈A

c ij⋅xij→min!

s . t .

∑
(i , j)∈A

x ij− ∑
(j , i)∈A

x ji={ 1 , if i=s
−1 , if i=t
0 , otherwise

;∀ i∈V

x ij≥0 ;∀(i , j)∈A

The decision variables are xij ;∀∈A with xij=1 if the edge i→ j is used. The parameters

cij ;∀∈A define the distance between the nodes i and j, but can also are interpreted as the time a

vehicle takes to drive from node i to node j.

This CMPL model can be formulated as follows whilst the sets A an V and the parameters cij , t and s are

defined in a pyCMPL script or jCMPL programme.

%data : A set[2], c[A], V set , s, t

par:

{ i in V: { i=s : rHs[i]:=1; |

i=t : rHs[i]:=-1; |

default: rHs[i]:=0;} }

var:

x[A] :real[0..];

obj:

sum{ [i,j] in A: c[i,j]*x[i,j] } -> min;

con:

{ i in V: node[i]: sum{ j in (A *> [i,*]) : x[i,j] } -

 sum{ j in (A *> [*,i]) : x[j,i] } = rHs[i];}

To describe the formulation of the shortest path problem in pyCMPL and jCMPL the simple example shown in

the following figure is used where the weights on the arcs are interpreted as the time in minutes a vehicle

needs to travel from a node i to a node j.

CMPL 2.1.0 - Manual 206

1

2

3

4 5

6
7

7

5 9

8

7
5

15

8

6
9

11

It is assumed that the starting node is node 1 and the target node is node 7.

 4.5.3.2 pyCMPL

 The corresponding pyCMPL script shortest-path.py is formulated as follows:

from pyCmpl import *

try:

model = Cmpl("shortest-path.cmpl")

routes = CmplSet("A",2)

routes.setValues([[1,2],[1,4],[2,1],[2,3],[2,4],[2,5],\

 [3,2],[3,5],[4,1],[4,2],[4,5],[4,6],\

 [5,2],[5,3],[5,4],[5,6],[5,7],\

 [6,4],[6,5],[6,7],[7,5],[7,6]])

nodes = CmplSet("V")

nodes.setValues(1,7)

c = CmplParameter("c", routes)

c.setValues([7,5,7,8,9,7,8,5,5,9,15,6,7,5,15,8,9,6,8,11,9,11])

sNode = CmplParameter("s")

sNode.setValues(1)

tNode = CmplParameter("t")

tNode.setValues(7)

model.setSets(routes, nodes)

model.setParameters(c,sNode,tNode)

model.solve()

print("Objective Value: ", model.solution.value)

for v in model.solution.variables:

if v.activity>0:

print(v.name , " " , v.activity)

except CmplException as e:

print(e.msg)

Executing this pyCMPL script through using the command:

python shortes-path.py

CMPL 2.1.0 - Manual 207

leads to the following output of the pyCMPL script:

Objective Value: 22.0

x[1,4] 1.0

x[4,6] 1.0

x[6,7] 1.0

The optimal route is 1→4→6→7 with a travelling time of 22 minutes.

 4.5.3.3 jCMPL

 The corresponding jCMPL programme shortest-path.java is formulated as follows:

import jCMPL.*;

public class ShortestPath {

 public static void main(String[] args) throws CmplException {

 try {

 Cmpl m = new Cmpl("shortest-path.cmpl");

 CmplSet routes = new CmplSet("A",2);

 int[][] arcs = {{1,2},{1,4},{2,1},{2,3},{2,4},{2,5},

 {3,2},{3,5},{4,1},{4,2},{4,5},{4,6},

 {5,2},{5,3},{5,4},{5,6},{5,7},

 {6,4},{6,5},{6,7},{7,5},{7,6}};

 routes.setValues(arcs);

 CmplSet nodes = new CmplSet("V");

 nodes.setValues(1,7);

 CmplParameter c = new CmplParameter("c", routes);

 Integer[] cArr = {7,5,7,8,9,7,8,5,5,9,15,6,7,5,15,8,9,6,8,11,9,11};

 c.setValues(cArr);

 CmplParameter sNode = new CmplParameter("s");

 sNode.setValues(1);

 CmplParameter tNode = new CmplParameter("t");

 tNode.setValues(7);

 m.setSets(routes, nodes);

 m.setParameters(c, sNode, tNode);

 m.setOption("-display nonZeros");

 //start CmplServer first with cmplServer -start

CMPL 2.1.0 - Manual 208

 //model.connect("http://127.0.0.1:8008");

 m.solve();

 if (m.solverStatus() == Cmpl.SOLVER_OK) {

 System.out.println("Objective value :" +

 m.solution().value());

 for (CmplSolElement v : m.solution().variables()) {

 System.out.println(v.name() + " " + v.activity());

 }

 } else {

 System.out.println("Solver failed " + m.solver() + " " +

 m.solverMessage());

 }

 } catch (CmplException e) {

 System.out.println(e);

 }

 }

}

Executing this jCMPL programme leads to the following output of the pyCMPL script:

Objective value :22.0

x[1,4] 1.0

x[4,6] 1.0

x[6,7] 1.0

As in pyCMPL the optimal route is 1→4→6→7 with a travelling time of 22 minutes.

 4.5.4 Solving randomized shortest path problems in parallel

 4.5.4.1 Problem description

For the last example it was shown that the optimal route travelling from node 1 to node 7 is 1→4→6→7.

This solution is based on the assumption that the travelling times between nodes are certain. This example

describes how a randomized shortest path problem can be solved where subproblems describing random

situations are solved in own threads in parallel.

 4.5.4.2 pyCMPL

Assuming that the starting node is node 1 and the target node is node 7 the corresponding pyCMPL script

shortest-path-threads.py is formulated as follows:

1

2

from pyCmpl import *

import random

CMPL 2.1.0 - Manual 209

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

try:

routes = CmplSet("A",2)

routes.setValues([[1,2],[1,4],[2,1],[2,3],[2,4],[2,5],\

 [3,2],[3,5],[4,1],[4,2],[4,5],[4,6],\

 [5,2],[5,3],[5,4],[5,6],[5,7],\

 [6,4],[6,5],[6,7],[7,5],[7,6]])

nodes = CmplSet("V")

nodes.setValues(1,7)

cList = [7,5,7,8,9,7,8,5,5,9,15,6,7,5,15,8,9,6,8,11,9,11]

sNode = CmplParameter("s")

sNode.setValues(1)

tNode = CmplParameter("t")

tNode.setValues(7)

models= []

randC = []

for i in range(5):

models.append(Cmpl("shortest-path.cmpl"))

models[i].setSets(routes, nodes)

tmpC =[]

for m in cList:

tmpC.append(m + random.randint(-40,40)/10)

randC.append(CmplParameter("c", routes))

randC[i].setValues(tmpC)

models[i].setParameters(randC[i],sNode,tNode)

for m in models:

m.start()

for m in models:

m.join()

i = 0

for m in models:

print("problem : " , i , " needed time " , m.solution.value)

for v in m.solution.variables:

if v.activity>0:

CMPL 2.1.0 - Manual 210

49

50

51

52

53

54

56

57

print(v.name , " " , v.activity)

i = i + 1

except CmplException as e:

print(e.msg)

except:

print("Unexpected error:", sys.exc_info()[0])

This script uses the same sets and parameters as before but for each of the five models instantiated in line

25 a new parameter array c is created whilst the original array c is changed by random numbers in line 30.

In line 38 all of the models are starting and in line 41 the pyCmpl script is waiting for the termination of all

of the models.

Executing this pyCMPL script through using the command:

python shortes-path-threads.pyshortest-path-threads.py

can lead to the following output of the pyCMPL script, but every new run will show different results because

of the random numbers.

problem : 0 needed time 18.2

x[1,4] 1.0

x[4,6] 1.0

x[6,7] 1.0

problem : 1 needed time 17.5

x[1,4] 1.0

x[4,6] 1.0

x[6,7] 1.0

problem : 2 needed time 20.2

x[1,2] 1.0

x[2,5] 1.0

x[5,7] 1.0

problem : 3 needed time 14.6

x[1,2] 1.0

x[2,5] 1.0

x[5,7] 1.0

problem : 4 needed time 19.1

x[1,4] 1.0

x[4,6] 1.0

x[6,7] 1.0

Depending on the uncertain traffic situations two different routes between the nodes 1→7 can be optimal:
1→4→6→7 and 1→2→5→7.

CMPL 2.1.0 - Manual 211

 4.5.4.3 jCMPL

Assuming that the staring node is node 1 and the target node is node 7 the corresponding jCMPL pro-

gramme shortest-path.java is formulated as follows:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

import java.util.ArrayList;

import jCMPL.*;

public class ShortestPathThreads {

 public static void main(String[] args) throws CmplException {

try {

 CmplSet routes = new CmplSet("A",2);

 int[][] arcs = {{1,2},{1,4},{2,1},{2,3},{2,4},{2,5},

 {3,2},{3,5},{4,1},{4,2},{4,5},{4,6},

 {5,2},{5,3},{5,4},{5,6},{5,7},

 {6,4},{6,5},{6,7},{7,5},{7,6}};

 routes.setValues(arcs);

 CmplSet nodes = new CmplSet("V");

 nodes.setValues(1,7);

 Integer[] cArr = {7,5,7,8,9,7,8,5,5,9,15,6,7,5,15,8,

9,6,8,11,9,11};

 CmplParameter sNode = new CmplParameter("s");

 sNode.setValues(1);

 CmplParameter tNode = new CmplParameter("t");

 tNode.setValues(7);

 ArrayList<Cmpl> models = new ArrayList<Cmpl>();

ArrayList<CmplParameter> randC = new ArrayList<CmplParameter>();

for (int i = 0; i < 5; i++) {

models.add(new Cmpl("shortest-path.cmpl"));

models.get(i).setSets(routes, nodes);

randC.add(new CmplParameter("c", routes));

ArrayList<Double> tmpC = new ArrayList<Double>();

for (Integer cArr1 : cArr) {

tmpC.add(Double.valueOf(cArr1) +

Double.valueOf(-40 + (Math.random() * 40))/10);

}

randC.get(i).setValues(tmpC);

models.get(i).setParameters(randC.get(i), sNode, tNode);

CMPL 2.1.0 - Manual 212

42

43

44

45

46

47

48

49

50

51

52

53

54

56

57

58

59

60

61

62

63

64

65

66

67

68

models.get(i).setOption("-display nonZeros");

}

 for (Cmpl c : models) {

c.start();

}

for (Cmpl c : models) {

c.join();

}

int i = 1;

for (Cmpl c : models) {

System.out.println("model : " + String.valueOf(i) +

" needed time : " + c.solution().value());

for (CmplSolElement v : c.solution().variables()) {

System.out.println(v.name() + " " + v.activity());

}

i++;

}

 } catch (CmplException | InterruptedException e) {

 System.out.println(e);

 }

 }

}

This programme uses the same sets and parameters as before but for each of the five models instantiated in

line 31 a new parameter array c is created whilst the original array c is changed by random numbers in lines

37 and 38. In line 46 all of the models are starting and in line 50 the programme is waiting for the termina-

tion of all of the models.

Executing this jCMPL programme can lead to the following output, but every new run will show different res-

ults because of the random numbers.

model : 1 needed time : 17.0396

x[1,4] 1.0

x[4,6] 1.0

x[6,7] 1.0

model : 2 needed time : 15.6087

x[1,4] 1.0

x[4,6] 1.0

x[6,7] 1.0

model : 3 needed time : 13.0639

x[1,4] 1.0

x[4,6] 1.0

CMPL 2.1.0 - Manual 213

x[6,7] 1.0

model : 4 needed time : 11.4603

x[1,4] 1.0

x[4,6] 1.0

x[6,7] 1.0

model : 5 needed time : 14.3389

x[1,2] 1.0

x[2,5] 1.0

x[5,7] 1.0

Depending on the uncertain traffic situations two different routes between 1→7 the nodes can be optimal:
1→4→6→7 and 1→2→5→7 .

 4.5.5 Column generation for a cutting stock problem

 4.5.5.1 Problem description and CMPL model

The following pyCMPL script and the corresponding jCMPL programme including the example are based on

the AMPL formulation of a column generator for a cutting stock problem and is taken from (Fourer et.al.

2003, p. 304ff). In this cutting stock problem long raw rolls of paper have to be cut up into combinations of

smaller widths that have to meet given orders and the objective is to minimize the waste.

In the example, the raw width is 110" and the demands for particular widths are given in the following table:

orders (demand) withs

48 20"

35 45"

24 50"

10 55"

8 75"

Fourer, Gay & Kernigham use the Gilmore-Gomory procedure to define cutting patterns by involving two lin -

ear programmes.

The first model is a cutting optimisation model that finds the minimum number of raw rolls with a given set

of possible cutting patterns subject to fulfilling the orders for the particular widths. This problem can be for -

mulated as in the CMPL file cut.cmpl as follows:

%data : rollWidth,widths set,patterns set,orders[widths], nbr[widths, patterns]

var:

 cut[patterns]: integer[0..];

obj:

number: sum{ j in patterns: cut[j] }->min;

CMPL 2.1.0 - Manual 214

con:

 {i in widths: fill[i]:

sum{ j in patterns : nbr[i,j] * cut[j] } >= orders[i];

 }

The parameter rollWidth defines the width of the raw rolls, the set widths defines the widths to be cut,

the set patterns the set of the patterns, the parameter orders the number of orders per width and the

parameters nbr[i,j] the number of rolls of width i in pattern j. The variables are the cut[j] and they

define how many cuts of a pattern j are to be produced.

The second model is the pattern generation model that is indented to identify a new pattern that can be

used in the cutting optimisation.

%data : widths set, price[widths], rollWidth

var:

use[widths]: integer[0..];

reducedCosts : real;

obj:

sum{ i in widths: price[i] * use[i]} -> max;

con:

sum{ i in widths : i * use[i] } <= rollWidth;

This model in the CMPL file cut-pattern.cmpl requires as specified in the %data entry the set widths,

the parameter rollWidth and a parameter vector price, that contains the marginals of the constraints

fill of a solved cut.cmpl problem with a relaxation of the integer variables cut[j].

It is a knapsack problem that "fills" a knapsack (here a raw roll with a given width rollWidth) with the

most valuable things (here the desired widths via the variables use[i]) where the value of a width i is

specified by the price[i].

 4.5.5.2 pyCMPL

The relationship between these two CMPL models and the entire cutting optimisation procedure is controlled

by the following pyCMPL script cut.py

1

2

3

4

5

6

7

8

9

from pyCmpl import *

import math

try:

cuttingOpt = Cmpl("cut.cmpl")

patternGen = Cmpl("cut-pattern.cmpl")

cuttingOpt.setOption("-no-remodel")

cuttingOpt.setOption("-solver cplex")

CMPL 2.1.0 - Manual 215

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

patternGen.setOption("-solver cplex")

r = CmplParameter("rollWidth")

r.setValues(110)

w = CmplSet("widths")

w.setValues([20, 45, 50, 55, 75])

o = CmplParameter("orders",w)

o.setValues([48, 35, 24, 10, 8])

nPat=w.len

p = CmplSet("patterns")

p.setValues(1,nPat)

nbr = []

for i in range(nPat):

nbr.append([0 for j in range(nPat)])

for i in w.values:

pos = w.values.index(i)

nbr[pos][pos] = int(math.floor(r.value / i))

n = CmplParameter("nbr", w, p)

n.setValues(nbr)

price = []

for i in range(w.len):

price.append(0)

pr = CmplParameter("price", w)

pr.setValues(price)

cuttingOpt.setSets(w,p)

cuttingOpt.setParameters(r, o, n)

patternGen.setSets(w)

patternGen.setParameters(r,pr)

ri = cuttingOpt.setOption("-int-relax")

while True:

cuttingOpt.solve()

for i in w.values:

pos = w.values.index(i)

CMPL 2.1.0 - Manual 216

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

price[pos] = cuttingOpt.fill[i].marginal

pr.setValues(price)

patternGen.solve()

if (1-patternGen.solution.value) < -0.00001:

nPat = nPat + 1

p.setValues(1,nPat)

for i in w.values:

pos = w.values.index(i)

nbr[pos].append(patternGen.use[i].activity)

n.setValues(nbr)

else:

break

cuttingOpt.delOption(ri)

cuttingOpt.solve()

print("Objective value: " , cuttingOpt.solution.value , "\n")

print("Pattern:")

vStr=" | "

for j in p.values:

vStr+= " %d " % j

print(vStr)

print("----------------------------")

for i in range(len(w.values)):

vStr="%2d | " % w.values[i]

for j in p.values:

vStr += " %d " % nbr[i][j-1]

print(vStr)

print("\n")

for j in p.values:

if cuttingOpt.cut[j].activity>0:

print("%2d pieces of pattern: %d" % (cuttingOpt.cut[j].activity, j))

for i in range(len(w.values)):

print(" width ", w.values[i] , " - " , nbr[i][j-1])

except CmplException as e:

print(e.msg)

CMPL 2.1.0 - Manual 217

In the lines 9 and 10, Cplex is chosen as solver for both models instantiated in the lines 5 and 6. The option

-no-remodel is needed to prevent some unwanted effects caused by CMPL-internal transformations. In

the next lines 12-19 the parameters rollWidth and orders and the set widths are created and the

corresponding data are assigned. The lines 25-34 are intended to create an initial set of patterns whilst the

matrix nbr contains only one pattern per width, where the diagonal elements are equal to the maximal pos -

sible number of rolls of the particular width. After creating the vector price with null values in the lines 36-

41 all relevant sets and parameters are committed to both Cmpl objects (lines 43-47).

In the next lines the Gilmore-Gomory procedure is performed.

1. Solving the cutting optimisation problem cut.cmpl with an integer relaxation (line 49 and 52).

2. Assigning the shadow prices cuttingOpt.fill[i].marginal to the corresponding elements

price[i] for each pattern (lines 54-56).

3. Solving the pattern generation model cut-pattern.cmpl (line 60).

4. If (1 – optimal objective value) is approximately < 0 (line 62)

then add a new pattern using the activities patternGen.use[i].activity for all elements

in widths (lines 65-67) and jump to step 1,

else

Solve the final cutting optimisation problem cut.cmpl as integer programme (lines 72 and 74)

After finding the final solution the next lines (lines 76-99) are intended to provide some information about

the final integer solution.

Executing this pyCMPL model through using the command:

python cut.py

leads to the following output of the pyCMPL script:

Objective value: 47.0

Pattern:

 | 1 2 3 4 5 6 7 8

20 | 5 0 0 0 0 1 1 3

45 | 0 2 0 0 0 0 2 0

50 | 0 0 2 0 0 0 0 1

55 | 0 0 0 2 0 0 0 0

75 | 0 0 0 0 1 1 0 0

 8 pieces of pattern: 3

 width 20 - 0

 width 45 - 0

 width 50 - 2

 width 55 - 0

CMPL 2.1.0 - Manual 218

 width 75 - 0

 5 pieces of pattern: 4

 width 20 - 0

 width 45 - 0

 width 50 - 0

 width 55 - 2

 width 75 - 0

 8 pieces of pattern: 6

 width 20 - 1

 width 45 - 0

 width 50 - 0

 width 55 - 0

 width 75 - 1

18 pieces of pattern: 7

 width 20 - 1

 width 45 - 2

 width 50 - 0

 width 55 - 0

 width 75 - 0

 8 pieces of pattern: 8

 width 20 - 3

 width 45 - 0

 width 50 - 1

 width 55 - 0

 width 75 - 0

 4.5.5.3 jCMPL

The relationship between these cut-pattern.cmpl and cut.cmpl and the entire cutting optimisation

procedure is controlled by the following jCMPL programme CuttingStock.java.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

import jCMPL.*;

import java.util.ArrayList;

public class CuttingStock {

 public static void main(String[] args) throws CmplException {

 try {

 Cmpl cuttingOpt = new Cmpl("cut.cmpl");

 Cmpl patternGen = new Cmpl("cut-pattern.cmpl");

 cuttingOpt.setOption("-no-remodel");

 cuttingOpt.setOption("-solver cplex");

 patternGen.setOption("-solver cplex");

CMPL 2.1.0 - Manual 219

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

 CmplParameter r = new CmplParameter("rollWidth");

 r.setValues(110);

 CmplSet w = new CmplSet("widths");

 int[] wVals = {20, 45, 50, 55, 75};

 w.setValues(wVals);

 CmplParameter o = new CmplParameter("orders", w);

 int[] oVals = {48, 35, 24, 10, 8};

 o.setValues(oVals);

 int nPat = w.len();

 CmplSet p = new CmplSet("patterns");

 p.setValues(1, nPat);

 ArrayList<ArrayList<Long>> nbr = new ArrayList<>();

 for (int i = 0; i < nPat; i++) {

 ArrayList<Long> nbrRow = new ArrayList<>();

 for (int j = 0; j < nPat; j++) {

 if (i == j) {

 Double nr = Math.floor(((Integer) r.value()) /

((int[]) w.values())[i]);

 nbrRow.add(nr.longValue());

 } else {

 nbrRow.add(Long.valueOf(0));

 }

 }

 nbr.add(nbrRow);

 }

 CmplParameter n = new CmplParameter("nbr", w, p);

 n.setValues(nbr);

 Double[] price = new Double[w.len()];

 for (int i = 0; i < price.length; i++) {

 price[i] = 0.0;

 }

 CmplParameter pr = new CmplParameter("price", w);

 pr.setValues(price);

 cuttingOpt.setSets(w, p);

 cuttingOpt.setParameters(r, o, n);

CMPL 2.1.0 - Manual 220

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

 patternGen.setSets(w);

 patternGen.setParameters(r, pr);

 int ri = cuttingOpt.setOption("-int-relax");

 while (true) {

 cuttingOpt.solve();

 CmplSolArray fill =

(CmplSolArray) cuttingOpt.getConByName("fill");

 int pos = 0;

 for (int with : (int[]) w.values()) {

 price[pos] = fill.get(with).marginal();

 pos++;

 }

 pr.setValues(price);

 patternGen.solve();

 CmplSolArray use =

(CmplSolArray) patternGen.getVarByName("use");

 if (1 - patternGen.solution().value() < -0.00001) {

 nPat++;

 p.setValues(1, nPat);

 for (int i = 0; i < w.len(); i++) {

 ArrayList<Long> tmpList = nbr.get(i);

 tmpList.add((Long) use.get(w.get(i)).activity());

 nbr.set(i, tmpList);

 }

 n.setValues(nbr);

 } else {

 break;

 }

 }

 cuttingOpt.delOption(ri);

 cuttingOpt.solve();

 CmplSolArray cut =

(CmplSolArray) cuttingOpt.getVarByName("cut");

 System.out.printf("Objective value: %4.2f%n%n",

cuttingOpt.solution().value());

 System.out.printf("Pattern:\n");

CMPL 2.1.0 - Manual 221

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

 System.out.printf(" | ");

 for (int j : (ArrayList<Integer>) p.values()) {

 System.out.printf(" %d ", j);

 }

 System.out.printf("\n----------------------------\n");

 for (int i = 0; i < w.len(); i++) {

 System.out.printf("%2d | ", w.get(i));

 for (int j : (ArrayList<Integer>) p.values()) {

 System.out.printf(" %d ", nbr.get(i).get(j - 1));

 }

 System.out.printf("\n");

 }

 System.out.printf("\n");

 for (int j : (ArrayList<Integer>) p.values()) {

 if ((Long) cut.get(j).activity() > 0) {

 System.out.printf("%2d pieces of pattern: %d %n",

(Long) cut.get(j).activity(), j);

 for (int i = 0; i < w.len(); i++) {

 System.out.printf("\twidth %d - %d%n",

w.get(i), nbr.get(i).get(j - 1));

 }

 }

 }

 } catch (CmplException e) {

 System.err.println(e);

 }

 }

}

In the lines 12 and 13, Cplex is chosen as solver for both models instantiated in the lines 9 and 10. The op-

tion -no-remodel is needed to prevent some unwanted effects caused by CMPL-internal transformations.

In the next lines 15-24 the parameters rollWidth and orders and the set widths are created and the

corresponding data are assigned. The lines 28-45 are intended to create an initial set of patterns whilst the

matrix nbr contains only one pattern per width, where the diagonal elements are equal to the maximal pos -

sible number of rolls of the particular width. After creating the vector price with null values in the lines 55-

56 all relevant sets and parameters are committed to both Cmpl objects (lines 58-62).

In the next lines the Gilmore-Gomory procedure is performed.

5. Solving the cutting optimisation problem cut.cmpl with an integer relaxation (line 64 and 67).

6. Assigning the shadow prices cuttingOpt.fill[i].marginal to the corresponding elements

price[i] for each pattern (lines 73-76).

7. Solving the pattern generation model cut-pattern.cmpl (line 80).

8. If (1 – optimal objective value) is approximately < 0 (line 84)

CMPL 2.1.0 - Manual 222

then add a new pattern using the activities patternGen.use[i].activity for all elements

in widths (lines 87-91) and jump to step 1.

else

Solve the final cutting optimisation problem cut.cmpl as integer programme (line 97 and 99)

After finding the final solution the next lines (lines 100-135) are intended to provide some information about

the final integer solution.

Executing this jCMPL model leads to the following output:

Objective value: 47.00

Pattern:

 | 1 2 3 4 5 6 7 8

20 | 5 0 0 0 0 1 1 3

45 | 0 2 0 0 0 0 2 0

50 | 0 0 2 0 0 0 0 1

55 | 0 0 0 2 0 0 0 0

75 | 0 0 0 0 1 1 0 0

 8 pieces of pattern: 3

 width 20 - 0

 width 45 - 0

 width 50 - 2

 width 55 - 0

 width 75 - 0

 5 pieces of pattern: 4

 width 20 - 0

 width 45 - 0

 width 50 - 0

 width 55 - 2

 width 75 - 0

 8 pieces of pattern: 6

 width 20 - 1

 width 45 - 0

 width 50 - 0

 width 55 - 0

 width 75 - 1

18 pieces of pattern: 7

 width 20 - 1

 width 45 - 2

 width 50 - 0

 width 55 - 0

 width 75 - 0

 8 pieces of pattern: 8

CMPL 2.1.0 - Manual 223

 width 20 - 3

 width 45 - 0

 width 50 - 1

 width 55 - 0

 width 75 - 0

CMPL 2.1.0 - Manual 224

 5 Authors and Contact

• CMPL

Thomas Schleiff - Halle(Saale), Germany

Mike Steglich - Technical University of Applied Sciences Wildau, Germany - mike.steglich@th-wildau.de

• Coliop, pyCMPL and CMPLServer

Mike Steglich

• jCMPL

Mike Steglich

Bernhard Knie – formerly Technical University of Applied Sciences Wildau, Germany

• Contact:

c/o Mike Steglich

Professor of Business Administration, Quantitative Methods and Management Accounting

Technical University of Applied Sciences Wildau

Faculty of Business, Administration and Law

Hochschulring 1

15745 Wildau (Germany)

Tel.: +493375 / 508-365

Fax.: +493375 / 508-566

mike.steglich@th-wildau.de

• Support via mailing list

Please use GitHub to get support, to post bugs or to communicate wishes.

https://github.com/MikeSteglich/Cmpl2/issues.

CMPL 2.1.0 - Manual 225

References

• Achterberg, T. 2009. SCIP - solving constraint integer programs. Mathematical Programming Com-

putation Volume 1 Number 1. 1–41.

• Coulouris, G.F.; J. Dollimore, T. Kindberg, G. Blai. 2012. Distributed Systems : Concepts and Design,

5th ed., Addison-Wesley.

• Fourer, R., D. M. Gay, B. W. Kernighan. 2003. AMPL: A Modeling Language for Mathematical Pro-
gramming, 2nd ed. Duxbury Press, Pacific Grove, CA.

• Anderson, D. R., D. J. Sweeney, Th. A. Williams, K. Martin. 2011. An Introduction to Management
Science : Quantitative Approaches to Decision Making. 13th ed.. South-Western.

• Fourer, R, J. Ma, R. K. Martin. 2010. optimisation Services: A Framework for Distributed optimisa-
tion. Operations Research 58(6). 1624-1636.

• GLPK. 2014. GNU Linear Programming Kit Reference Manual for GLPK Version 4.54.

• Hillier, F. S., G. J. Lieberman. 2010. Introduction to Operations Research. 9th ed.. McGraw-Hill

Higher Education.

• Foster, I., C. Kesselman (editors). 2004. The Grid2: 2nd Edition: Blueprint for a New Computing In-
frastructure, Kindle ed., Morgan Kaufmann Publishers Inc.

• Kshemkalyani, A.D., M. Singhal, M. 2008. Distributed Computing – Principles, Algorithms, and Sys-
tems, Kindle ed., Cambridge University Press.

• St. Laurent, S., J. Johnston, E. Dumbill. 2001. Programming Web Services with XML-RPC, 1st ed.,

O'Reilly.

CMPL 2.1.0 - Manual 226

	1 About CMPL
	2 CMPL Language reference manual
	2.1 CMPL elements
	2.1.1 General structure of a CMPL model
	2.1.2 Statements and expressions
	2.1.3 Data types and arrays
	2.1.3.1 Data types
	2.1.3.2 Sets
	2.1.3.3 Arrays
	2.1.3.4 Special values
	2.1.3.5 Functions and operations for arrays

	2.1.4 Object definitions
	2.1.4.1 Assignment attributes
	2.1.4.2 Sections
	2.1.4.3 Special forms of assignments
	2.1.4.4 Examples for definitions of parameters and variables

	2.1.5 User messages
	2.1.6 Code blocks
	2.1.6.1 Overview
	2.1.6.2 Code block symbols
	2.1.6.3 Control commands in code blocks
	2.1.6.4 Validity scope of symbols
	2.1.6.5 Validity scope of sections
	2.1.6.6 Code block as statement or expression
	2.1.6.7 Using a formula as a code block header
	2.1.6.8 Specific control structures
	2.1.6.9 Multithreading

	2.1.7 Names for rows and columns
	2.1.7.1 Name prefix
	2.1.7.2 Explicit control of the name prefix
	2.1.7.3 Explicitly set the name for rows and columns

	2.1.8 Extensions of CMPL
	2.1.8.1 Logical constraints
	2.1.8.2 Products of decision variables
	2.1.8.3 Container values and class-like constructs
	2.1.8.4 Special ordered sets
	2.1.8.5 Other model reformulations

	2.1.9 Short Language reference

	2.2 CMPL Header
	2.2.1 CMPL Header elements
	2.2.2 Include
	2.2.3 CmplData
	2.2.3.1 CmplData in CMPL Header
	2.2.3.2 CmplData file format

	2.2.4 CmplXlsData
	2.2.4.1 CmplXlsData in CMPL Header
	2.2.4.2 CmplXlsData file format

	2.3 Incompatibilities with Cmpl 1.12
	2.4 Examples
	2.4.1 Selected decision problems
	2.4.1.1 The diet problem
	2.4.1.2 Production mix
	2.4.1.3 Production mix including thresholds and step-fixed costs
	2.4.1.4 Production mix with user-defined functions for thresholds and step-fixed costs
	2.4.1.5 The knapsack problem
	2.4.1.6 The standard transport problem
	2.4.1.7 Transportation problem using a 2-tuple set
	2.4.1.8 Transhipment problem
	2.4.1.9 Transhipment problem using Excel via CmplXlsData
	2.4.1.10 Assignment problem
	2.4.1.11 Quadratic assignment problem
	2.4.1.12 Quadratic assignment problem using the solutionPool option
	2.4.1.13 Generic travelling salesman problem

	2.4.2 Other selected examples
	2.4.2.1 Solving the knapsack problem
	2.4.2.2 Finding the maximum of a concave function using the bisection method

	3 CMPL software package
	3.1 CMPL software package in a glance
	3.2 Download and installation
	3.3 CMPL
	3.3.1 Running CMPL
	3.3.2 Usage of the CMPL command line tool
	3.3.3 Using CMPL with several solvers
	3.3.3.1 HiGHS
	3.3.3.2 SCIP
	3.3.3.3 CBC
	3.3.3.4 GLPK
	3.3.3.5 Gurobi
	3.3.3.6 CPLEX
	3.3.3.7 Other solvers

	3.4 Coliop
	3.5 CMPLServer
	3.5.1 Single server mode
	3.5.2 Grid mode
	3.5.3 Reliability and failover

	3.6 pyCMPL
	3.7 jCMPL
	3.8 Input and output file formats
	3.8.1 Overview
	3.8.2 CMPL and CmplData
	3.8.3 Free-MPS
	3.8.4 CmplInstance
	3.8.5 ASCII or CSV result files
	3.8.6 CmplSolutions
	3.8.7 CmplMessages

	4 CMPL's APIs
	4.1 Creating Python and Java applications with a local CMPL installation
	4.1.1 pyCMPL
	4.1.2 jCMPL

	4.2 Creating Python and Java applications using CMPLServer
	4.2.1 pyCMPL
	4.2.2 jCMPL

	4.3 pyCMPL reference manual
	4.3.1 CmplSets
	4.3.2 CmplParameters
	4.3.3 Cmpl
	4.3.3.1 Establishing models
	4.3.3.2 Manipulating models
	4.3.3.3 Solving models
	4.3.3.4 Reading solutions
	4.3.3.5 Reading CMPL messages

	4.3.4 CmplExceptions

	4.4 jCMPL reference manual
	4.4.1 CmplSets
	4.4.2 CmplParameters
	4.4.3 Cmpl
	4.4.3.1 Establishing models
	4.4.3.2 Manipulating models
	4.4.3.3 Solving models
	4.4.3.4 Reading solutions
	4.4.3.5 Reading CMPL messages

	4.4.4 CmplExceptions

	4.5 Examples
	4.5.1 The diet problem
	4.5.1.1 Problem description and CMPL model
	4.5.1.2 pyCMPL
	4.5.1.3 jCmpl

	4.5.2 Transportation problem
	4.5.2.1 Problem description and CMPL model
	4.5.2.2 pyCMPL
	4.5.2.3 jCMPL

	4.5.3 The shortest path problem
	4.5.3.1 Problem description and CMPL model
	4.5.3.2 pyCMPL
	4.5.3.3 jCMPL

	4.5.4 Solving randomized shortest path problems in parallel
	4.5.4.1 Problem description
	4.5.4.2 pyCMPL
	4.5.4.3 jCMPL

	4.5.5 Column generation for a cutting stock problem
	4.5.5.1 Problem description and CMPL model
	4.5.5.2 pyCMPL
	4.5.5.3 jCMPL

	5 Authors and Contact

