CMPL

<Coliop | Coin> Mathematical Programming Language

coliop.org

Version 2.1.0
July 2024

Manual

M. Steglich, T. Schleiff

CMPL 2.1.0 - Manual 1

Table of contents

Yo o TU | | PP PPPPPP 6
2 CMPL Language referenCe ManUal........iccuuiiiiieiiiie s s esss s ese s eas s sese s sea e s sena e s sesa s s sesaessenn s ennnssennn 7
2.1 CMPL €lEMENES. . eevuuiiiieriisieerriassssrss s e srrss s s s rrs s s s rrs e e s rrs s e s er s s e e eesa s e s er s s s e s en s s sasennnsaennnnnsesrnnan 7
2.1.1 General structure of @ CMPL MOAEL......ciiiiiiiuiiiiiiiiiiie e er s e e e r e e e aaaan 7
2.1.2 Statements and EXPrESSIONS. .. .uuuiiiu ittt ie ittt e st e e e e e e e e ra e e e raaas 8
2.1.3 Data tyPES @NA @ITAYS. ... o eeeeieeeruiieeeeeeeetaa e e e eeeeeeesa e s e eeeeeas e aaeeeeen s e e eeerernr e aaaeeernnnan 10
0 G T = = =N 10
N N 0 < 3 PR 11
08 G TR 1 1V = | PO 14

B R R Y o= Toi T= | AV | 1=t 16
2.1.3.5 Functions and operations for @rrays..... ... cue e ieirieieeeerrrrirasss e e e e ee s e e eerrernne e e e e e e eees 17
2.1.4 ODbJect defiNitioNS. 19
2.1.4.1 Assignment @ttribULES.coeeee e e eeees 19

B Y= o o PP 20
2.1.4.3 Special forms Of @SSIGNMENTES........iiiiiiieieeeiiiirae e e eerrerrer e e e e e e e e erensn e e e e e eeeeeennnns 20
2.1.4.4 Examples for definitions of parameters and variables...............cceiiiiiiiiiiiiicci e, 21

B R T Tl 4Tt ST= o PPN 22
2.1.6 COAE DIOCKS. ...cetrui it arraan 24
N Tt 1< T 24
2.1.6.2 Code blOCK SYMDBOIS.cicriiiiiiiii e s 25
2.1.6.3 Control commands in code DIOCKS.........ccuiiiiiiiiiiiiii e 27
2.1.6.4 Validity SCOpe Of SYMDOIS.cevuiiiiirrisis e e e s e s rrr s s s s s e e s e s rr s e s e ennnas 28
2.1.6.5 Validity SCOPE Of SECHIONS. ...uuiiiiiieie e ieeeeer i e e e e e e e e e 29
2.1.6.6 Code block as statement Or eXPreSSiON.......c.vviiiii i e 29
2.1.6.7 Using a formula as a code block header..........c.ooui i 30
2.1.6.8 Specific CONrol SEHUCTUIES.....u i e 31

B S TR N W] Lo T == T 1T PP 35
2.1.7 Names for rows and COIUMNS........iiiiuiiiiiciiiie e e er e e e e e e e e e e e eraa s 35
B O N = T o = PN 35
2.1.7.2 Explicit control of the NamMe PrefiX.......oeeeeeiii e e 36
2.1.7.3 Explicitly set the name for rows and COlUMNS........c.cuiiiiiiiiiiii i 38
2.1.8 EXEENSIONS Of CMPL....ccvtuiiiiiiiiiieieris s s e s s s s s e s s e e s s s rra s s s ern s e s erna s e s ernnasessnnnnssannns 38
20 < 0 R o T (o= 1 o 1= =L TS 38
2.1.8.2 Products of decision variables.........coiveeruiiiiiiiiiiiiiiis s s s 39
2.1.8.3 Container values and class-like CONSEIUCES.oooviiiiiriiiiiier e e 40
2.1.8.4 Special ordered SELS......iiiiiiiiiiiii 42
2.1.8.5 Other model reformulations.........ouveeruiiiiiiiiie e e ereas 43
2.1.9 Short Language refErENCE.uuiiireiiei et st e e s e e s a s e e e s e ra e e rnaas 44
B A @\ | o I o = T L= PPN 54
2.2.1 CMPL Header €lements. . ..uiiiie et s e et e e s s e s s e s e e e s s aa s e eaa s e ea e s een s e nnnaeenn 54
8 2 T 11 o [P 55
B T © 41 0] 1D - T TR 56

CMPL 2.1.0 - Manual 2

2.2.3.1 CmplData in CMPL HEAAETuuiiiiiiriiriiri i errri s s rri s e s s e e s e e s s e nenas 56

2.2.3.2 CmpIData file fOrmat....c..ciiiiiiii e 58

P @ 4T 0] [D | = PP 62
2.2.4.1 CmplXIsData in CMPL HEAAEN.........ciiiiiiiii ettt e e 62
2.2.4.2 CmplXisData file format........ceeiiiiiriiiiicrii s e e 63

2.3 Incompatibilities With CmPl 1.12....cceuiiiiii i e e e s s r s s rrnaee 71
B = |] o] L= 74
2.4.1 Selected deCiSION PrODIEMS.ceiiiieei e e e e e e e e e e e eer e e e e e e e eeee s e e e aeaanenes 74
2.4.1.1 The diel Problem. ... e 74
2.4.1.2 ProdUCHION MiX...iieesuiieirsiieeessssssssssssssssssssssrssssssrsnssssessassssesnsssssensssessenssnessrnnnnessens 76
2.4.1.3 Production mix including thresholds and step-fixed COStS.........ccovviiiiiiiiiiiiiiinr e, 79
2.4.1.4 Production mix with user-defined functions for thresholds and step-fixed costs............... 80
2.4.1.5 The knapsack problem...........uo i s e 85
2.4.1.6 The standard transport ProblEM..........ciiiiiiiiiii i 88
2.4.1.7 Transportation problem using a 2-tuple Set...........ucoiiiiiiiiiiii e 90
2.4.1.8 Transhipment problem.... ... 93
2.4.1.9 Transhipment problem using Excel via CmplIXIsData........c.cceevviiiiiieriinineeencneseeernn e eeenns 96
2.4.1.10 AsSIgNMENE ProbIEM........iiiiiiii i e e e e 97
2.4.1.11 Quadratic assignment Problem...........iiiiiiiiiii 100
2.4.1.12 Quadratic assignment problem using the solutionPool option.............cccuveiiiiieiiinnnnn. 103
2.4.1.13 Generic travelling salesman problem.........ccciiiii i 106

2.4.2 Other selected EXamPIES.cuuiiiiieiiii e e s e e e e s e rrrr e s e s rrn e e s senrneaaenes 108
2.4.2.1 Solving the knapsack problem.........c...ciiiiiiiiniiiii s e e e 108
2.4.2.2 Finding the maximum of a concave function using the bisection method...................... 110

3 CMPL SOftWAIre PACKAGE. uuieeiieeieeeeiiteias e e e e e e e e crre s s s e e e e e e e e ee s e e e e e e e e e e neersnna s s e eaeeeeennnnnnnannnenns 111
3.1 CMPL software package in @ GIaNCE.......c.uiiiiiiiiiiii i 111
3.2 Download and iNStallation.........ceuuueiiiieiiiiis e 112
G T8 T | = PPN 112
3.3.1 RUNNING CMPL...cciiiiiiiiii i e e e e s e e r s 112
3.3.2 Usage of the CMPL command liN€ t00.........ccverruuiiiiiiiiriiiei e 113
3.3.3 Using CMPL With SEVEral SOIVELS......iiuuiiiiii i eaaes 117
333 1 HIGHS. .. et a e r e aaan 117

I J0C T0C 107 1 PP 117

I J0C T3 TG 2 - PSPPSR 118
TG T3 T] U 119

G J0C T0C 10T 1 o o 119
TG TR T O 1 PPNt 120

G T0C TR T © 1 1= =T =T PO 120

G 1R o] oo PP 121
TR O | T T PPN 124
3.5.1 SiNGIE SEIVEEF MOE. .. .ceieeiieuiee e e e e eeeeeee e e e e e e e e e e s e e e e e e e e e rens e e e e e e e e eeerenn e eeeeaas 126
3.5.2 Gl MOAE .. it e e ra 129
3.5.3 Reliability @nd faillOVET........cocuuiiii 133

CMPL 2.1.0 - Manual 3

G T S0V 1 PP 136

G 07101 PP 137
3.8 Input and outpuULt file fOrMALS......coueeeei e e e e 137
G TR T8 0 1Y o1 PP 137
3.8.2 CMPL and CmpIData.....cceruiiieernisiieernisissesss s sssns s s sers s sssrnn s s ser s sssrsassssssnnssssssnnssssnnnnnns 138
3.8 .3 FrEE-MPS....ccceeiiiee et e e e e e e e e e e e e e e r s 139
OIS @491 0] 1 0 LY = oVl TP 139
3.8.5 ASCII OF CSV reSUIL filS...uuuiiiiiiiiieiieieiiiee st e e r e e e e r s 142
3.8.6 CMIPISOIULIONS. .. ettt e e e e e e e e e s e e e e e e e e e e e e e e raa s 143
3.8.7 CIMPIMESSAGES. ...ceeruuuuaeeeeeiieernnu e s eeeereenesna s s e eaeeeeeesssa s seaaeeeeess s aaeaaseenensnnanseeeaeeennnnnnnns 146

L | o 3 | o PR PPTTTTPPRT 148
4.1 Creating Python and Java applications with a local CMPL installation...........cccceeeivieniveennineennnenens 148
L 0 I 0 PP PPRT 150

L 01 PP PPN 152
4.2 Creating Python and Java applications using CMPLSEIVEN..........ccouiriiiemumrniae e eeeeereennan e e eeeeeeeeens 156
.21 PYCIMPL. ...ttt e e e e e 157

L 11 | PP 158
4.3 pYCMPL refer€nCe MaNUal......ccieiiieeeeiriniissesseeeerrriaasssssessreessaasssssesssesssssssssassssensssssnsesseessennnns 159
L 0 A 14 o] 15 < N 159
4.3.2 CMPIP@rameters. . ..cceveeeei e e e e e e eeeeeei e e e e e e e e e eenen e e e e e e e e e e e e e s e e et e e e aeereernn e e e aaaeeennrnrns 161

L RC T0C 2 O 14| PP 164
4.3.3.1 Establishing MOGEIS..........e e e e e e e 164
4.3.3.2 Manipulating MOGAEIS.........coiiiimiiiiiii s e e e e 165
LG TG T0C B Vi T I o oo L= PP 166
4.3.3.4 Reading SOIULIONS.......cccvuruiiiiiiii e e e s r e s s s rar e s e e na e aanes 171
4.3.3.5 Reading CMPL MESSAGES. ...cuuuiituiittiiitiieiie e et s st s et st s s et e e s e s e e s e e s eaanas 176

4.3.4 CMPIEXCEPUIONS. ..ceeeeeieei et e e eece et e e e e e e e e e e e s e e e s e e e eeeeensnna s e e aeaeeeenennnnna s aeeaaeeennnnns 177
4.4 JCMPL referenCe MaNUAL. ... ccuuiiiiii it s et s e e s e et s e e r e s e ea s e e e s e eaa s e eennseenaaees 178
o 0 0] o] 151 PSRRI 178
LA @ 4]0 =T =0 1= T 180

L G T 14| PP 183
4.4.3.1 Establishing MOGEIS.ueeeiieeie e e e e e s 183
4.4.3.2 Manipulating MOdEIS.........icuiiiiiiiiii i 185
4.4.3.3 SOIVING MOAEIS..... oo eeenennnan 186
4.4.3.4 Reading SOIULIONS.......ccciuruiiiiiiiii e e rr s s rr s s e e e s s s ran s e s e e r s e nanes 190
4.4.3.5 Reading CMPL MESSAQES. ... eeruurerrrrusrrrrrnnsrserrnsssssrnnsssssrnnsssssrnnaseernssserrareernaneernn 196

L @ 4]0 [ol o o L= PPN 197
L o= 141 0] [N 197
4.5.1 The diet ProDIEM...... e e e e e e e e e e e e e r e e e e e e e eeennns 197
4.5.1.1 Problem description and CMPL MOdEl...........oiiiuiiiiiiiiiiiiiiiei e 197
4.5.1.2 PYCMPL....ceeeieeeee oottt e e e e et e e n s e e e e e e e e e eerene e e e e e aaeeeeennnrnnan 197

L TR G 5 10 o o) TN 199

4.5.2 Transportation ProblEM..........iiiui i 200

CMPL 2.1.0 - Manual 4

4.5.2.1 Problem description and CMPL MOdel..........ccoiiiiiiiiiiiiiiiii e e e 200

L T o1/ | 201
4.5.2.3 JOMPL.. . cctei e e arnraan 203
4.5.3 The shortest path problem..........ccuiiiii e 205
4.5.3.1 Problem description and CMPL MOdel...........ciiiiiuiiiiiiiiineirin s s s s ers s er e eeea 205
4.5.3.2 PYCMPL. ..ttt 207

L TR T0C T 11| 208
4.5.4 Solving randomized shortest path problems in parallel...............eeiiiiiiiiii s 209
4.5.4.1 Problem deSCriPtioN......iiiuiiiie i e ean 209
4.5.4.2 PYCMPL....ieeieiei et eer s a e e 209
4.5.4.3 JOMPL. .. citi et e aaaa 212
4.5.5 Column generation for a cutting stock problem........c..ceiviiiriiiiiiirii e 214
4.5.5.1 Problem description and CMPL MOdel..........ccoiiiiiiiiiiiiiiir e e e 214

L TR 107 01 | P 215
4.5.5.3 JOMPL.. it arnraan 219

SR AV 0 1 g Vo £=3K= o Ta I o o] = o PP 225

CMPL 2.1.0 - Manual 5

1 About CMPL

CMPL (<Coliop|Coin> Mathematical Programming Language) is a mathematical programming language and
a system for mathematical programming and optimisation of linear optimisation problems.

The CMPL syntax is similar in formulation to the original mathematical model but also includes syntactic ele-
ments from modern programming languages. CMPL is intended to combine the clarity of mathematical mod-
els with the flexibility of programming languages.

CMPL executes HiGHS, SCIP, CBC, GLPK, Gurobi or CPLEX directly to solve the generated model instance.
The CMPL package contains HiGHS as a standard solver as well as SCIP. Because it is also possible to trans-
form the mathematical problem into MPS or Free-MPS, alternative solvers can be used.

CMPL is an open-source project licensed under GPL. It is written in C++ and is available for most of the rel-
evant operating systems (Windows, OS X and Linux).

The CMPL distribution contains Coliop which is CMPL's IDE (Integrated Development Environment). Coliop
is an open-source project licensed under GPL. It is written in C++ and is as an integral part of the CMPL dis-
tribution.

The CMPL package also contains pyCMPL, jCMPL and CMPLServer.

PYCMPL is the CMPL application programming interface (API) for Python and an interactive shell and
jCMPL is CMPL's Java API. The main idea of this APIs is to define sets and parameters within the user ap-
plication, to start and control the solving process and to read the solution(s) into the application if the prob-
lem is feasible. All variables, objective functions and constraints are defined in CMPL. These functionalities
can be used with a local CMPL installation or a CMPLServer.

CMPLServer is an XML-RPC-based web service for distributed and grid optimisation that can be used with
CMPL, pyCMPL and jCMPL. It is reasonable to solve large models remotely on the CMPLServer that is in-
stalled on a high performance system. CMPL provides four XML-based file formats for the communication
between a CMPLServer and its clients. (CmplInstance, CmplSolutions, CmplMessages, CmplInfo).

pyCMPL, jCMPL and CMPLServer are licensed under LGPLV3.

CMPL, Coliop, pyCMPL, jCMPL and CMPLServer are COIN-OR projects initiated by the Technical University of
Applied Sciences Wildau.

CMPL 2.1.0 - Manual 6

2 CMPL Language reference manual

2.1 CMPL elements

2.1.1 General structure of a CMPL model

The structure of a CMPL model follows the standard model of linear programming (LP), which is defined by a
linear objective function and linear constraints.

¢’ x - max!

S.t.

A-x<b

x>0

In such a model, four different types of objects can be distinguished:

variables Decision variables (columns within the linear programming model)

var

objectives Objective functions (neutral rows within the linear programming model)
obj

constraints | Constraints (restricted rows within the linear programming model)
con

parameters Given values within the model
par

A CMPL model consists of definitions of objects of these four types. The model can be divided into sections,
each introduced by the name of the object type, and containing the associated definitions. For example, a
simple CMPL model can have the following structure:

par:

// definition of the parameters
var:

// definition of the variables
obj:

// definition of the objective (s)

con:

// definition of the constraints

A typical LP problem is the production mix problem. The aim is to find an optimal quantity for the products,
depending on given capacities. The objective function is defined by the profit contributions per unit ¢ and
the variable quantity of the products x. The constraints consist of the use of the capacities and the ranges
for the decision variables. The use of the capacities is given by the product of the coefficient matrix 2 and
the vector of the decision variables x and restricted by the vector of the available capacities b.

CMPL 2.1.0 - Manual 7

The simple example:
1-x,+2-x,+3 ‘x5 - max!
S.t.

5.6 ‘x,+7.7 -x,+10.5 -x,<15
9.8 -x,+4.2 -x,+11.1 -x,<20
0<x,;n€1,2,3

can be formulated in CMPL as follows:

par:
c := (1, 2, 3);
b := (15, 20);

A := ((5.
9

var:
X [defset(c)]: real;

obj:
profit: c¢c”T * x -> max;

con:
A * x <= Db;
x >= 0;

2.1.2 Statements and expressions

A CMPL model consists of statements. Each statement is completed with a semicolon. The essential state-
ment is the definition or assignment. A symbol on the left-hand side is assigned the value of the expression
on the right-hand side. If the symbol on the left-hand side has not yet been defined, it is thereby defined as
well. If the assignment is in a section for an object type, the expression on the right-hand side is converted
into an object of this type.

The both most important operators are:

1= Assignment (assigns the value of the right hand side expression to the CMPL symbol on the left
hand side.)
Only allowed for the definition of a decision variable (representing a column in the LP problem

matrix), an objective or a constraint (representing a row in the LP problem matrix). The name of
the symbol on the left hand side is used as the name for the column or row in the LP problem
matrix represented by the value on the right hand. The symbol is assigned an object which can
be a decision variable, objective or constraint.

In the example, the following statement defines on the right-hand side a vector with three elements. In ad-
dition, a symbol c is defined to which the vector is assigned.

par:
c := (1, 2, 3);

A vector with two elements is assigned to a newly defined symbol b.
| b := (15, 20);

CMPL 2.1.0 - Manual 8

Then a matrix with 2x3 elements is defined on the ride hand side and assigned to the newly defined sym-
bol A.

A := ((5.6, 7.7, 10.5),
(9.8, 4.2, 11.1));

In the variables section, a vector X of decision variables with the type real is defined.

var:
x [defset(c)]: real;

The left-hand side defines a vector of variables with the name x. The function defset (c) ensures that this
vector uses the same indices as the vector c. The expression on the right side is the data type real. Since
the statement is in the var section, this expression is converted into a decision variable with data type real.
Such a decision variable is created and assigned for any element of the vector x. The columns in the LP
problem matrix for these decision variables are labelled x[1], x[2] and x[3].

In the following, the objective function with the name profit is defined.

obj:
profit: ¢c”"T * x -> max;

The right-hand side (after the colon) is a formula expression, created from symbols defined before and the
objective sense max. Because the statement stands in the obj section, this expression is converted into an
objective function of the LP problem and assigned to symbol profit. Moreover, the row of this objective
function in the LP problem matrix is also labelled profit.

The constraints are defined in the constraints section.

con:
A * x <= Db;
x >= 0;

These statements consist of right-hand sides only. According to the constraint section, the formula expres-
sion is converted into a constraint of the LP problem. Since there is no left-hand side, no symbol or row
name is defined. Therefore, the rows are given a default name.

The usual operators can be used in expressions. If the operands are vectors or matrices, a matrix operation
is performed. Important operators are:

Arithmetical:
+ Sign or addition, also string concatenation
- Sign or subtraction
*

Multiplication, If number is multiplied by a symbol, the multiplication operator can be omitted.
(e.g 2x is identical to 2*x.

/ Division

To the power of

Transpose:
| T | Transpose vector or matrix (mainly used in matrix multiplication)
Comparison:

= Equal to

>= Greater than or equal

<= Less than or equal to

<> Unequal

CMPL 2.1.0 - Manual 9

> Greater than
< Less than

Construction operators:

() | o

Array construction from elements (comma separated) or
Function call with the constructed array as parameter or
Arithmetical bracketing in expressions

Tuple construction from elements or
Indexing operation using the constructed tuple as index or
Parameter for construction of a restricted type

Interval construction between lower and upper bound
If used in a context where a set is expected, then the interval is converted to a set.

In addition, a CMPL model can contain comments at any point:

/7 Comment up to end of line
#
VA Comment between /* and */

2.1.3 Data types and arrays

2.1.3.1

Objects in CMPL have a data type in addition to the object type. There are simple data types (consisting of
exactly one element) and composite data types (consisting of several objects, each of which has its own

data type).

Almost all data types are only permitted for parameter objects. Some data types can be used for variables.
Obijective functions and constraints implicitly always have the data type real. In most cases, the data type
only has to be explicitly specified for variables, for parameters it results automatically from the type of the

Data types

assigned expression.

Simple data types usable also for variables:

real

int
integer
bin

binary

« floating point number (uses internally C data type double)

- literal value consists of digits, decimal point and optional exponent
« integer number (uses internally C data type long)

« literal value consists only of digits
« integer value which can only be 0 or 1

« also usable as boolean value
- literal values are true (value 1) and false (value 0)

Other important simple data types:

string

« character string
« literal value is enclosed in double quotes

CMPL 2.1.0 -

Manual 10

Composite data types:

interval « Interval between two numeric values
« If the lower or the upper bound is omitted, then the interval is unbounded on this
side.
tuple « Tuple of an arbitrary number of elements (also no element) with any data type.

A special kind of tuple is an index tuple, which consists only of elements of the data
types int and string.

set « Set of an arbitrary number of elements (also no element), all elements must be in-
dex tuples.
formula « An expression of parameters and decision variables

« Note that a formula is not a constraint, but an appropriate formula can be converted

into a constraint.
container A value that contains other symbols (similar to struct or class in C)

As far as is reasonably possible, expressions of one data type can be converted into another data type. Such
a data type cast has the form of a function call, where the data type name is used as the function name.

Some types can be further restricted by type parameters. Such type parameters are specified in the form of
a tuple after the type name. The most important use is to restrict the range of validity for a decision vari-
able.

Examples (within a var: section):

x: real; Defines x as a real decision variable with default range (x=0).
x: real[0..100]; Defines x as a real decision variable 0<x<100,

x: reall[..]; Defines x as a real decision variable with no ranges.

y: integer[l..]; Defines y as an integer decision variable y=1,

z: binary; Defines z as an integer decision variable z €(0,1},

2.1.3.2 Sets

A set is a collection of indices. Every element within a set is an n-tuple (pair of n entries) of integers or
strings, where n is named the rank of the tuple. A tuple is constructed by the [.. 1 operator, or for 1-
tuples also contextually converted from a single integer or string.

Usage:
[entry-1 [, entry-2, .., entry-n]] Construction of an n-tuple.
The resulting tuple is an index tuple, if all entries
are int or string.

There are two special tuples:
[null] 0-tuple. This special index tuple is the only tuple with rank 0.

It can be element within a set as other index tuples.
[] Empty tuple. Note that this is not the 0-tuple, it is not even an index tuple.

Because it's not an index tuple it cannot be element within a set. But it can be
converted to a set, and means then the full set (infinite set which contains every
possible index tuple.)

CMPL 2.1.0 - Manual 11

In addition to the elements they contain, sets in CMPL are also characterised by the order of these elements.
This order is relevant in iterations when the keyword ordered is used. The order of the elements is de-
termined during the construction of a set.

Set construction:
set (tuplel, tuplez, ..) Constructs a set from the given index tuples. Instead of index

tuples also int or string values are allowed, which will be con-
verted to 1-tuples. The order of the elements is determined
during the construction of a set.

e.g.:

set ("a" ’ "o" ’ "C")

set (1, [1,2]1, [1,"a"])

set (interval) Constructs a set of the 1-tuples of all integer values within the
interval. If the interval has no lower or no upper bound, the
resulting set will be infinite. The elements are ordered from the
lowest to the highest value.

e.g.:
set (1..10)
set (0..)

set () Empty set (without any element)

start(increment) end Constructs a set of 1-tuples of integers which starts with

start, is incremented or decremented in each step by incre-
ment and ends with value end. The values start, incre-
ment and end must be integers. For the increment the value
0 is not allowed, but it can be negative. If increment is posit-
ive, the elements are ordered from the lowest to the highest. If
increment is negative, the elements are ordered from the
highest to the lowest.

e.g.:

1(1)10 isequalto set(1..10)

10(-3)0 isequalto set (10, 7, 4, 1)
*tuple Constructs a set with only one element. Instead of an index
tuple, an int or string value is also allowed, which is conver-

ted into a 1-tuple.
interval If an interval value is used where a set is expected, then the in-

terval will contextually converted to a set.
[] Empty tuple. If it is used where a set is expected, it means the

full set. This is the infinite set containing all possible index

tuples.
[] If the tuple contains at least one element that is an interval or a

set, and if it is used where a set is expected, then the tuple is
converted to a set. If the tuple contains elements not suitable

for this conversion, an error is generated. e.g.:
[1..2, 1..2]

[Set("a","b","c"), l]

CMPL 2.1.0 - Manual 12

Infinite sets are important for indexing arrays and for matching operations. They are usually composed with
[...].Important infinite components are:

*

All index tuples of rank 1.

e.g.:
[*] set of all index tuples of rank 1
[*, *] set of all index tuples of rank 2
[1,*] set of all index tuples of rank 2 which have 1 as first part
/ Also all index tuples of rank 1, but marks the part to be discarded in the match
operation.
e.g.:
[*,/1 set of all index tuples of rank 2, but return in match operation only

the first part of the matching tuples
All 1-tuples that consists of an integer value

e.g.:
[1,..] set of all index tuples of rank 2 which have 1 as first part and any
integer as second part
<empty> All index tuples of all ranks (also rank 0)
e.g.:
[] set of all possible index tuples including the 0-tuple
[*,1 set of all index tuples of at least rank 1 (i.e. all possible index tuples
save the 0-tuple)
[,1,1 set of all index tuples of all ranks, which have a 1 as part at arbitrary

position (because [] contains the O-tuple, the 1 can be also at the
first or the last position in the index tuples)

The most important operations and functions for sets are:

t in s Checks whether an index tuple t is element of the set s, result is a binary value.
(Also used for iterating over all index tuples within s.)
e.g.:
3 in 1..10 results true
[1,1] in [1,*] results true

[1,1] in [*] results false
sl *> s2 Match operation. Builds the intersection between the two sets and then removes

from the tuples of the result set the parts that correspond to parts of s2, but are
not a set or are marked with /.

e.g.:

sl *> [1,%*] Finds all 2-tuples in s1 with the first entry equal to 1 and
returns a set only consisting of the second entries of the
tuples found.

sl *> [*1,*] Finds all 2-tuples in s1 with the first entry equal to 1 and
returns this set of tuples. (also the first part is included,
because *1 is a set).

sl *> [*,/] Finds all 2-tuples in s1, and returns a set of only consisting

of the first parts of the tuples found.

CMPL 2.1.0 - Manual 13

len(s) Returns the count of elements within the set s. If s is an infinite set, the res-

ult is the special value inf.
rank (s) Returns the rank of set s. If all tuples within s have the same rank, the result

is this rank. Otherwise the result is an interval from the minimum rank to the
maximum rank of the tuples.
The result for the empty set is 1.

2.1.3.3 Arrays

All data in CMPL is organised as an array. Indices of an array are index tuples. The set of all index tuples
that are indices in a given array represent the definition set of the array.

Scalar values can be considered as an array with one element whose index is the O-tuple.

An array is constructed by (...). If a separating comma is contained within, the corresponding defini-
tion set is set (1. .n), where n is the number of specified elements. A comma can also be placed after the

last element. If there is no comma, the created array does have a O-tuple set as the definition set. In this
case, the brackets therefore act like simple arithmetic brackets.

Examples

(0.5, 1, 2, 3.3, 5.5) Array of 5 numbers.
Definition set is: set (1..5)

(3) Array with only one element.
Definition set is: set ([null])

(3,) Also array with only one element.
Definition set is: set (1)

(4,,7) Array of two numbers.
Definition set is: set (1, 3)

0 Empty array (with no element).
Definition set is: set ()

null Also an empty array

In addition to numbers, elements in an array can also be data objects of any type, i.e. tuples, sets, decision
variables or constraints. It is also possible to mix data objects of different types within an array.

Arrays themselves, however, cannot be elements in another array. Instead, in a nested array construction,
the arrays are combined into an entire array with the corresponding definition set.

Examples

((1, 2), (3, 4)) Array of four numbers.
Definition set is: set ([1,1], [1,21, [2,1]1, [2,2])
which is equivalent to: set ([1..2, 1..2])

((3)) Array with only one element.

Definition set is: set ([null, null])which is equivalent to:
set ([null])
(1, (2, (3, 4))) Array of 4 numbers.

Definition set is: set ([11, [2,1], [2,2,11, [2,2,2])

CMPL 2.1.0 - Manual 14

The individual elements of an array and partial arrays can be accessed with indexing. To do this, a tuple
must be specified directly after the name of the array. This tuple must either be an index tuple or the tuple
used for indexing must be convertible into a set.

In the first case, the single element to be retrieved from the array is the one belonging to this index tuple. If
the definition set of the array does not contain the specified index tuple, an error occurs.

In the second case, a partial array is retrieved. To do this, a matching operation is internally performed with
the definition set of the array as the first operand and the set specified as the tuple as the second operand.
The result is an array of the elements of the matching index tuple, with the set resulting from the match op-
eration as the definition set. If the match operation results in the empty set, this is not an error, but the res-
ult is an empty array.

Examples

a = ((11, 12), (13, 14)); Given example arrays

b := (21, (22, (23, 24)));

c := 31;

all] results an error

b[1] results: 21

cl1] results an error

al2,1] results: 13

b[2,1] results: 22

cl2,1] results an error

a[null] results an error

b[null] results an error

clnull] results: 31

all results array a itself

bl] results array b itself

cll results array c itself

al2,] results array: (13, 14)

bl2,] results array: (22, (23, 24)

cl2/] results empty array

al2,1..] results array: (13, 14)

b[2,1..] results: 22 but with definition set: set (1)
cfz,1..] results empty array

al*2,*1] results: 13 but with definition set: set ([2,1])
b[*2,*1] results: 22 but with definition set: set ([2,1])
cl[*2,*1]

results empty array

Indexing has a slightly different meaning when it is applied to the left-hand side of an assignment. Then the
indexing determines which elements of the array are assigned values. If an element under the correspond-
ing index tuple does not yet exist in the array, it is added.

Examples
a := (11, 12, 13); No left hand side indexation.
The specified array is assigned, and all previous content of a are

overwritten.

CMPL 2.1.0 - Manual 15

all := (11, 12, 13); Indexation with the full set.
The given array is assigned, and inserts or overwrites the elements
with index tuples [11, [2], [3].
All other elements of a remain unchanged.

af4] := 14; The element with index tuple [4] is inserted or overwritten.
All other elements of a remain unchanged.

p := set("strl","str2"); Assigns a["strl"] := 1 and a["str2"] := 2

alpl = (1, 2);

al4]l := (14, 15); Error because an attempt is made to assign an array to a single ele-
ment.

al4..] := (14, 15); Assigns a[4] := 14 and a[5] := 15

Af4, 1..]1 := (14, 15); Assigns a[4,1] := 14 and a[4,2] := 15

2.1.3.4 Special values

There are some special values in CMPL:

inf Infinite value of data type real
Can be used in interval construction, e.g. -inf..inf.

Can be used in numeric expressions, e.g. inf + 1 resultsto inf
invalid Is not a real value, but a marker for a non existing value.

Can be used in assignment and in array construction.
e.g. (1,invalid, 2) is an array with 3 elements and definition set
set (1, 2, 3),in which the second element has not a value yet.

A value can be checked with the function valid for validity.
null Empty array whichhas special semantics in certain contexts:

- Array construction:
Marks a non existing element.
Note that this is different from an existing element with no
value (marked with invalid)
e.g. (1,null, 2) is an array with 2 elements and definition
set set (1, 3).
» Tuple construction:
Converted into a O-tuple. So [1,null, 2] is equivalent to
[1,2].
« Arithmetic addition:
Converted into value 0. So null+2 resultsto 2.
(also invalid+2 resultsto 2.)
« Arithmetic multiplication:
Converted into value 1. So nul1*2 resultsto 2.
(also invalid*2 resultsto 2.)
« String concatenation:
Converted to empty string. S0 null+"abc" results to "abc™

(also invalid+"abc" resultsto "abc".)

CMPL 2.1.0 - Manual 16

<empty> An omitted value has special semantics in certain contexts:
- Array construction:
Marks a non existing element (equivalent to nul1).
« Tuple construction:
Converted to the full set of all possible index tuples of all ranks.
« Interval construction:
Converted to the infinite value (equivalentto -inf (on the

left side of operator ..)orto inf (on the right side of ..)

2.1.3.5 Functions and operations for arrays

Important functions and operators for arrays are:

defset (a) Returns the definition set of array a
validset (a) Returns the set of all index tuples of array a, for which a value exists in the array

(i.e. for which the value is not invalid)
If the array contains only valid values, then validset results the same as def-

set.
t of a Checks whether an index tuple t is an indexing tuple with a valid value in the ar-

ray a
Equivalent to:
t in validset (a)

Like in also of can be used for iterations.

Arrays can be used as operands in operations:

+ - One operand is a non-empty array, the other a scalar value:

- Performs the operation for every element of the array and the scalar value, the
result is an array with the same definition set as the operand array.
eg.. (1, 2, 3) + 1 resultsin (2, 3, 4)

« Both operands are arrays:

The definition set of both arrays must be equal, otherwise it is an error. It per-
forms the operation for every pair of elements of the operand arrays with the
same indexing tuple.

eg.. (1, 2) + (3, 4) resultsin (4, 6)
* » One operand is a non-empty array, the other a scalar value:

Performs the operation for every element of the array and the scalar value.
The result is an array with the same definition set as the operand array.
eg.. (1, 2, 3) * 2 resultsin (2, 4, 6)

- First operand is a transposed array of rank 1, second operand is a non-trans-
posed array of rank 1:
The definition set of both arrays must be equal, otherwise it is an error. Per-
forms matrix multiplication of a row vector with a column vector.
e.g.. (1, 2)~T * (3, 4) resultsin 11

CMPL 2.1.0 - Manual 17

« First operand is a non-transposed array of rank 1, second operand is a trans-
posed array of rank 1:
Performs matrix multiplication of a column vector with a row vector.
e.g.. (1, 2) * (3, 4)~T resultsin ((3, 4), (6, 8))
- First operand is a rectangular array of rank 2, second operand is a non-trans-
posed array of rank 1:
The definition set of the second operand must match the second part of the
definition set of the first operand, otherwise it is an error.
Performs a multiplication of a matrix with a column vector.
e.g.. ((1, 2), (3, 4)) * (5, 6) resultsin (17, 39)
- First operand is a transposed array of rank 1, second operand is a rectangular ar-
ray of rank 2:
The definition set of the first operand must match the first part of the definition
set of the second operand, otherwise it is an error.
Performs multiplication of a row vector with a matrix.
e.g.. (1, 2)~T * ((3, 4), (5, 6)) resultsin (13, 16)
« Both operands are rectangular arrays of rank 2:
The second part of the definition set of the first operand must match the first
part of the definition set of the second operand, otherwise it is an error.
Performs multiplication of a matrix with another matrix.
e.g.. ((1, 2), (3, 4)) * ((5, 6), (7, 8))
resultsin ((19, 22), (43, 50))
« One operand is an array, the other a scalar value:
Performs the operation for every element of the array and the scalar value. The
result is an array with the same definition set as the operand array.
e.g.. (1, 2, 3) >= 2 resultsin (false, true, true)
e.g.: if x is defined as var x[3]; then x >= 0;
is equivalentto x[1] >= 0; x[2] >= 0; x[3] >= 0;
» Both operands are arrays:
The definition set of both arrays must be equal, otherwise an error occurs. Per-
forms the operation for every pair of elements of the operand arrays with the
same indexing tuple.
eg.. (1, 2, 3) = (1, 2, 3) resultsin (true, true, true)
e.g.: if x isdefined as var x[3]; then x >= (4, 5, 6);
is equivalentto x[1] >= 4; x[2] >= 5; x[3] >= 6;

Both operands can be arbitrary values or arrays. The full operands are checked for
equality (or non-equality). The result is either true or false.
eg.. (1, 2, 3) == (1, 2, 3) resultsto true
e.g.: if x is defined as var x[3]; then x ==
results in false (an array of decision variables is not the same as a numeric 0)

CMPL 2.1.0 - Manual

18

2.1.4 Object definitions

2.1.4.1 Assignment attributes

A CMPL model essentially consists of definitions of data objects in the form of assignments. The semantics of
such an assignment is controlled by attributes. These attributes can precede the assignment in any order.

Important attributes are:

object types The value of the right-hand side of an assignment is converted to
the specific object type.
e.g.:
var x: real;
Calls the convert function to var with the data type real as para-
meter, meaning the construction of a new decision variable of the
data type real, and assigns it to the symbol x.

data types The value of the right-hand side of the assignment is converted to
the given data type.
e.g.:
set s := (1, 2, 3);

is equivalent to:

s := set(l, 2, 3);

Note that the data type is only used for the conversion of the right-
hand side, but the symbol is not restricted to values of this data

type.
const 'Ithe assigned symbol is write protected. Any try to reassign occurs
an error.,
e.g.:
const i := 42;

Assigns symbol i that cannot be reassigned.

ref Creates a reference to another symbol.
e.g.:
a :=1; ref b 1= a; a := 2;

Then also b has the value 2.

public Specifies the validity scope of the symbol defined in the assignment.
private Used primarily within code blocks.

local

new Even if the assigned symbol already exists, define a new symbol hid-

ing the original one. Used primarily within code blocks, in combina-

tion with private or local validity scope.
ordered Execution one after the other in the order of the affected set or the

definition set of the affected array in a single thread. Currently only
implemented for iterations in a code block.

CMPL 2.1.0 - Manual 19

2.1.4.2 Sections

A section is an area of the CMPL model in which specified defaults apply to the assignment attributes. A sec-
tion begins with the section header followed by a colon. All subsequent statements belong to the section un-
til another section header starts the next section.

A section header consists of a number of assignment attributes that can be specified in any order. These at-
tributes are then used by default for all assignments within the section. An attribute specified directly in the
individual assignment overrides the section's default.

Examples
const par: Defines a parameter array of three numbers that cannot be changed
a = (1, 2, 3); afterwards.
set: Defines a set of three numbers.
s := (1, 2, 3);
var bin: Defines three decision variables with the data type bin.
X, Y, Zj

There are special assignment operators that do not respect the attributes of the section but have special de-
fault attributes. These assignment operators are:

1= Works like an assignment := but the default validity scope is
local instead of public. The attributes from the current section
are not taken into account.

t= Works like : := but performs in addition the specific operation.
- e.g.

*= a += b;

/=

is equivalent to
a ::= a + b;

These special assignment operators are particularly useful for parameters used for control, in order to be
able to assign them easily in sections for variables or restrictions.

2.1.4.3 Special forms of assignments
An assignment can have several left-hand sides. These left-hand sides are specified before the assignment

operator, separated by commas. The assignment is carried out for each left-hand side.

An assignment can have an array on the left side and a scalar value on the right side. In this case, this value
is assigned to each array element on the left side.

An assignment can be made without a right-hand side and assignment operator. A default value is then used
as the right-hand side, which is invalid per default..

But, if an attribute determines the data type or the object type, the default value of the data type or object
type is used. For example, for a numeric type this is 0, for string the empty string, and for set the empty
set.

For the object type var, the standard is a decision variable with the type real[0..]. The assignment re-
spectively definition is done with the assignment operator:. For objective functions and restrictions, how-

CMPL 2.1.0 - Manual 20

ever, an assignment without right-hand side is not possible. If an objective function and restrictions are
defined without a left-hand side, an automatic name is assigned.

2.1.4.4 Examples for definitions of parameters and variables

Examples for parameters (within a par: section):

k := 10; Parameter k with value 10

k := (0.5, 1, 2, 3.3, 5.5); All the same vector of parameters with five elements

k[] := (0.5, 1, 2, 3.3, 5.5);

k[l..] := (0.5, 1, 2, 3.3, 5.5);

k[1..5] = (0.5, 1, 2, 3.3, 5.5);

n:=1..5;

k[n] := (0.5, 1, 2, 3.3, 5.5);

All:= (16, 45.4); Definition of a vector with two integer values
all]=16and a[2]=45.4

al,] = ((5.6, 7.7, 10.5), Dense matrix with two rows and three columns

(9.8, 4.2, 11.1));

b[] = (22); Definition of the vector b with only one element.

products := set("bikel", "bike2"); Defines a vector for machine hours based on the set

machineHours [products] := (5.4, 10); products.

= ((

cube[x,v,z]

(

(1,2),(3,4))
(5,6), (7,8))

)7

myString := "this is a string"; String parameter
a := 3; Parameter g with value 3
gll..ql := (1, 2, 3); Usage of g for the definition of the parameter g
= 1(1)2; Definition of a parameter cube that is based on the
y = 1(1)2; sets x, y and z
z 1= 1(1)2;

set (

bla] := (10, 20,

(1,11,101,21,102,21,[3,2]

30, 40);

) ;

Definition of a sparse matrix b that is based on the 2-

tuple set a.

Examples for decision variables (within a var: section):

x: real; x IS @ non-negative real decision variable

X; x is also a non-negative real decision variable (because
data type real is the default for decision variables, if
not given in the section)

x: real[..]; x is a real decision variable with no ranges

x: real[0..100]; x is a real decision variable,0 < x<100

x[1..5]: int[10..20]; vector with 5 elements,10<x,<20;n 61,2,...,5}

x[1..5,1..5,1..5]:

real[0..];

A three-dimensional array of real decision variables with
125 elements identified by indices,
>0;i,j,kE1,2,...,5]

Xi,j k=

CMPL 2.1.0 - Manual

21

par: Defines a vector of non-negative real decision variables
prod := set("bikel", "bike2"); based on the set prod
var:
x[prod]: real[0..];
y: bin; x is a binary variable y €[0,1}
par: Defines a sparse matrix of non-negative real decision

a:=set([1,1],11,2],12,2]1,13,2]1); | variables based on the set a of 2-tupels.
var:

x[a]: real[0..];

x[1..10], y[l..5]: real; Defines two vectors of real decision variables

X[l] : real Defines x[1] as real decision variable, but x[2] as in-

x[2]: int; teger decision variable.

x[1..2]: (real, int); Defines x [1] as real decision variable, but x[2] as in-

teger decision variable.

const type: Defines own data type for real values within the range
my real := real[0..100]; 0 to 100

var:

x[1..10]: my real;

Defines decision variables of that type

2.1.5 User messages

During executing the CMPL code, outputs can be made to the console. These outputs can be used in to log
the processing of CMPL. However, they cannot be used to display the optimisation result, as the optimisation
only runs when the CMPL code has been completely processed and the model instance has been created.

The following functions are available for output:

echo (a) Console output of the argument value. If the argument is an array, the val-
ues are separated by space. The output is finished with a line break.

error (s) Outputs an error message with the argument string and ends the execution
of the CMPL model.

All objects in CMPL have a string representation that is used for output. For decision variables and restric-
tions, this cannot be the corresponding result value from the optimisation, as this is not yet known at the
time the output is executed. Instead, an internal representation of the CMPL object is output.

For parameters, the parameter value is displayed. In order to output numerical values in particular in the de-
sired form, they can be converted into a string by specifying the desired formatting.

format(f,u,..) Creates a formatted string from the values of the arguments u, .., using
the format string £. The format follows the syntax of the C function

sprintf (..).

For each of the specified arguments u, ... the format string must contain a formatting specification that
matches the type of the argument value. Such a formatting specification has the following structure (for fur-
ther details see C documentation):

CMPL 2.1.0 - Manual 22

$<flags><width><.precision>specifier

specifier

d Data type int

£ Data type real

S Data type string

If the type of the corresponding argument does not match the type of the specifier, then the argument
is converted to the matching type.

flags

- Left-justify

+ Forces the result to be preceded by a plus or minus sign (+ or -) even for positive numbers.
By default only negative numbers are preceded with a - sign.

width

number Minimum number of characters to be printed. If the value to be printed is shorter than this
number, the result is padded with blank spaces. The value is not truncated even if the result

is larger.
* The width is not specified in the format string, but as an additional integer value argu-

ment preceding the argument that has to be formatted.

.precision
-number | For integer specifiers d: precision specifies the minimum number of digits to be written. If

the value to be written is shorter than this number, the result is padded with leading zeros.
The value is not truncated even if the result is longer. A precision of 0 means that no charac-
ter is written for the value 0.

For f: this is the number of digits to be printed after the decimal point.

For s: this is the maximum number of characters to be printed. By default all characters are
printed until the ending null character is encountered.

When no precision is specified, the default is 1. If the period is specified without an explicit

value for precision, 0 is assumed.
LF The precision is not specified in the format string, but as an additional integer value argu-

ment preceding the argument that has to be formatted.

Examples:

a:=66.77777;

echo (format ("%10.2f", a)); outputs: 66.78
i:=7; 3:=9;

echo (format ("%d of %d", 1i, J));: outputs: 7 of 9

CMPL 2.1.0 - Manual 23

2.1.6 Code blocks

2.1.6.1 Overview

A code block is a part of the CMPL code enclosed in curly brackets. The structure in the simplest case is:

{ header: body }

The code block body consists of any other CMPL code, which can be statements or an expression. A code
block header is formally always a Boolean expression. In addition to a normal Boolean expression, the defini-
tion of code block symbols can be used. In this case, the expression is considered satisfied if there is at least
one valid assignment of values to the code block symbols. If there are several valid assignments, then the
execution is carried out for each of these assignments, so that the code block acts as a loop.

Instead of a single header, there can also be any number of headers separated by commas:
{ headerl, header2, ..: body }

As far as the headers act as conditions, they must all be satisfied. As far as they represent a loop, they act
as a nested loop.

The header can also be empty, in which case it acts as a condition that is always satisfied.
{: body }

A code block can be separated into several parts using |.

{ headerl: bodyl | header2: body2 | .. }

In this case, the first body for which its headers are satisfied is executed. All subsequent parts are not evalu-
ated.

A code block can be executed immediately. Or it defines an object of the data type function that can be
assigned and called later. For this purpose, a & must be placed directly in front of the code block. In this
case, the code block receives an array as a function parameter, accessible as $arg.

A code block always returns an array as a result. This result array can be used if the code block represents
an expression. If it is an statement, the result array is usually an empty array and is not used.

Examples:
{ @1 in 1..3: a[i] := 2*i; } Assigns the value 2 to a[1], 4toa[2] and 6 to
al3].
The code block contains an iteration over
set (1..3) and the assignment is made in the
code block body
all = { @1 in 1..3: 2*1i };

Assigns the value 2 to a[1], 4to a[2] and 6 to
al3].

The code block constructs an array (2, 4, 6)
with the definition set (1..3) . Afterwards, this
array is assigned to a.

CMPL 2.1.0 - Manual 24

sum{ @i in 1..2, @ in 1..2: x[1i,7]

This expression is equivalent to:
x[1,1] + x[1,2] + x[2,1] + x[2,2]

The code block constructs an array (x[1,117,
x[1,21, x[2,1]1, x[2,2]) and then the func-
tion sum is called with this array as function para-

return a;
b

meter.
sum{ [@i,@3j] in [1..2,1..2]: x[i,]] Both expressions are equivalent to previous ex-
sum{ @t in [1..2,1..2]: x[t] } ample.
{ x> 0: a :=100; } Executes the assignment to symbol a only if x>0.
a:={k>0:11] k<0:-11]:0}; The parameter a is assigned the sign of k.
{ k> 0: afll] :=1; [: al2] := 1; } Assignment to either a[1] or a[2] depending on
k.
al{k > 0: 1 |: 2}] :=1; Equivalent to previous example
my_sum := &{: Defines a function object equivalent to the built-in
local a := null; function sum and assigns it to my sum.
{ @i of Sarg: a := a + Sargli]; }

2.1.6.2 Code block symbols

New symbols can be defined within a code block header. Such symbols get their value in the header and
cannot be changed by any assignment. The symbols have local validity that ends with the end of the associ-

ated code block body.

In general, a header is always to be understood as a Boolean expression. If new symbols are defined in this
expression, they are assigned values so that the Boolean expression is fulfilled. If the new symbol is the left-
hand operand of in or of, then all possible assignments are used, resulting in an execution like in a loop.

E.g. the expression { @i in s.:

set s.

} can be understood as: for all i which are element in

The @ marking of a code block symbol in its definition is optional. It serves the readability of the CMPL code,

and the prevention of errors by not taking into account that a symbol may already be defined in an external

context.

If i is not defined in the outer context, then

{ @1 in s: .. }
and
{ i in s: ... }

are identical. In both cases i is defined as a code block symbol and the code block body is executed for

each element in s.

CMPL 2.1.0 - Manual

If 1 is already defined externally, then with

i :=1; { @i in s: ... }

this iteration is executed as above. Inside the code block, the outer i is hidden by the code block symbol i.
However, with

i :=1; {1 in s: ...}

no code block symbol is defined, but it is checked whether the value of the outer i is element of s, and if

so, the code block body is executed once.

Although a code block header always formally represents a boolean expression, a code block symbol to be
defined may not be placed anywhere in it. The following uses are permitted:

+ as the left side of a comparison with = or ==

(because of the semantic similarity with an assignment, the assignment operator := may then also
be used instead of the comparison operator)

« as the left-hand side of the operators in and of
« within a tuple construction expression that stands in place of the simple code block symbol

Examples of code block headers

@i =1 Executes the code block body once, with i con-
taining the value 1

@i = (1, 2, 3) Executes the code block body once, with i con-
taining the array (1, 2, 3)

@i = set (1, 2, 3) Executes the code block body once, with i con-
taining the set set (1, 2, 3)

@i = set() Executes the code block body once, with i con-
taining the empty set

@i in set(l, 2, 3) Executes the code block body three times, with i
first 1, then 2, then 3

@i in set([1,1],12,1]1,13,2]) Executes the code block body three times, with i
first the tuple [1, 171, then [2, 1], then [3,2]

@i in set() The code block body is not executed. (if a next al-
ternative code block part exists, then execution
goes to it)

(@i, 11 = [2, 1] Executes the code block body once, with i con-
taining the value 2

(@i, 11 = [1, 2, 1] Executes the code block body once, with i con-
taining the tuple [1,2]

[(ei, 1] =1 Executes the code block body once, with i con-
taining the null tuple [nul1l]

(@i, 11 = [1, 2] The code block body is not executed. (if a next al-
ternative code block part exists, then execution
goes to it)

CMPL 2.1.0 - Manual 26

(@i, 1]

in set([1,1],12,1]1,13,2]) Executes the code block body two times, with i

first 1, then 2

(1, 2, 11 Executes the code block body once, with i con-
taining 1 and j containing the tuple [2, 1]

(Other assignments for i and § would be possible.
CMPL selects the assignment in such a way that
rank-1 tuples are assigned from the front as far
as possible.)

[ei, 3,

€3]

= [1, 2, 3, 4] Executes the code block body once, with i con-
taining the tuple [1, 2] and 5§ containing 4

(@i, @3]

in set([1,1],([2,11,1([31]) Executes the code block body three times, first with

i=1 and j=1, then i=2 and §=1, then i=3 and
j=[null]

In addition, a code block header may also consist of a stand-alone code block symbol. Such a code block
symbol is not given a value and may not be used in expressions within the code block. It can only be used

as a reference for break, continue Or repeat.

2.1.6.3 Control commands in code blocks

Within a code block, special control commands can be used to set the result value of the code block and to

control iterations.

Syntactically, these commands are assignments with special attributes, whereby the left-hand or right-hand
side of the assignment can be missing. Generally, the left-hand side of the assignment references the code
block, idendified by the first code block symbol defined there. If the left-hand side is missing, the innermost
code block is affected. The right-hand side of the assignment represents the result value of the code block.
If the right-hand side is missing, nul1 is used as the value.

break

The execution of the body of the referenced code block is cancelled. Remaining state-
ments are skipped.

If the referenced code block contains iteration, the execution of the remaining iteration
steps are skipped.

E.g.:{ @i of a: { a[i] = v: break i := 1i; } }

searches for the value v in the array a and returns the index of the first element found
as result, or nul1 if not found.

The i on the left side of the break statement is necessary because the innermost code
block is the comparison, but the over all i has to be cancelled and must therefore be
named here. The i on the right side is the index of the found element as the result
value of the code block.

continue

The execution of the body of the referenced code block is cancelled. Remaining state-
ments are skipped.

If the referenced code block contains iterations, remaining iteration steps are ex-
ecuted.

CMPL 2.1.0 - Manual 27

If the referenced code block contains no iteration continue is equivalent to break.
e.g.: { @i of a: { ali] = v: continue i[i] := 1; } }

searches for the value v in the array a and creates an array as code block result, which
contains only the indices of the values found. The first i in the continue statement
references the code block, for which the result is set. The second i is used as normal
indexation value within the code block result array.

repeat

The execution of the body of the referenced code block is cancelled. Remaining state-
ments are skipped.

Execution starts again with the referenced code block, but the code block result is not
reinitialised. The code block headers are evaluated again. If the header conditions are
not longer fulfilled, the code block body is not executed again.

eg.:i ::= 0; p := { Q@r, al[++i] <> v: repeat r[i] := alil; };
searches for the value v in array a and returns the part of array a before the value
found as a code block result, which is then assigned to p.

Note that one cannot define i as code block symbol here, because a code block sym-
bol cannot be be assigned or incremented.

It should also be noted that the code block must define a code block symbol (@r) to
assign a code block result.

return

Only allowed inside a code block used as a function definition. This command works
like break, but refers to the innermost function definition instead of the innermost
code block. Explicit referencing to a code block by specifying a left side of the assign-
ment is not allowed.

eg..f := &{ a = $arqgll,], v = Sargl2]: { @i of a: { a[i] = v:
return i; } } };

Defines a function £ with two arguments. The first argument is an array, in which the
value given as second argument is searched. The function value is the index of the first
found element in the array, or null if not found.

2.1.6.4 Validity scope of symbols

Local and private symbols can be defined within a code block body. Such symbols can only be accessed
within the code block body.

Unlike local symbols, private symbols nevertheless have a global lifetime. This means that when the code
block body is executed again, the previous value of the symbol is accessible again. This can be used in par-
ticular to encapsulate functionality and data in the sense of object-oriented programming.

Within a directly executed code block, all symbols that are directly accessible outside the code block are also
accessible inside the code block.

CMPL 2.1.0 - Manual 28

This applies regardless of whether the symbols are public, local or private, or whether they are code block
symbols of an external code block. Within a directly executed code block, new public symbols can also be
defined, which are then accessible even after the end of the code block.

In a code block used as a function, however, no external symbols are accessible at all. The only exceptions
are predefined symbols, such as the data types. No new public symbols can be defined within such a code
block. These restrictions apply in order to design CMPL functions as pure functions, which receive all input
data via the function arguments and return all result data as function values.

Public symbols can be made accessible by writing the code block in the function definition with s+{ ... }
instead of «{ ... }. Then all public symbols are accessible in the code block and new ones can be defined
in it.

2.1.6.5 Validity scope of sections

An outer section continues to apply within a code block. A section started within a code block body is only
valid until the end of the code block, after which the section valid before the code block becomes active
again. Especially with {:: ... }, the defaults of the valid section can be temporarily discarded. Note the
two colons, the first ends the empty code block header, the second starts a section without defaults within
the code block body.

2.1.6.6 Code block as statement or expression

A directly executed code block can be used as an instruction or as an expression. Likewise, a code block
body can consist of instructions or represent an expression. The following four cases can be distinguished:

code block body contains statements The statements within the code block body are executed.

code block is used as statement The result value of the code block is discarded (usually the code
block has no explicit result value, which means the result value is
null).
Note that the code block itself does not need a semicolon as an
end of statement, but the statements within the code block body

do.

€g.. { @1 in 1..3: afli] := 2*i; }
code block body contains statements The statements within the code block body are executed. Usually,
code block is used as expression one sets a result value of the code block within these instructions

with break, continue Or repeat.

e.g.: al[] := { @1 in 1..3: continue 2*i; };

Note the semicolon at the end of this example. It is necessary
here because the statement it ends is the assignment, not the
code block itself.

code block body is expression The expression of the code block body constructs the result of the
code block is used as expression code block.
eg.: a[] := { @1 in 1..3: 2*1i };

Note that within the code block body there is no semicolon, be-
cause the code block body is not a statement.

CMPL 2.1.0 - Manual 29

code block body is expression This case is not allowed. It would also make no sense because
code block is used as statement the code block as an statement would discard the value construc-
ted by the expression within the code block body

A code block used as a function definition always represents an expression of the data type function. The
code block body in it can be a statement or an expression:

code block used for function definition ~ When the function is called, the statements within the code
code block body contains statements block body are executed. The code block body can construct a
return value by using return (or break, continue Or re-
peat). Otherwise the return value of the function is null.
eg.. £ := &{: return 2*Sarg; };
code block used for function definition ~ When the function is called, the expression is evaluated and
code block body is expression forms the return value of the function.
eqg.. £ := &{: 2*Sarg };

If a code block consists of several parts, then code block bodies consisting of statements and expressions
may be combined with each other as desired.

2.1.6.7 Using a formula as a code block header

A code block header can also consist of a boolean formula, which means it can contain conditions over de-
cision variables. Therefore it is possible to make values or constraints depending of the values of decision
variables or the fulfillment of other constraints. Such a construct is not directly allowed in a linear optimisa-
tion model, but is suitably transformed using automatically added binary variables.

Examples:
var: x, y: real; If x is greater than 0, then y must not be greater than
con: y <= { x > 0: 10 [: 20 }; 10, but if x is 0, then y must only be lesser or equal 20.
var: x: real; If x is greater than 0O, then there are additional fix costs
obj: x + { x > 0: 10 } -> min; of 10
var: x, y: real; If both variables x and y are greater than 0, then the
con: sum of them must not be greater than 1.

{x>0¢&& y >0: x+vy<=1; }

You can also set parameter values depending on the value of decision variables:

var: b: bin; If the binary variable b has value 1, then the parameter
par: a := { b: 2 |: 1 }; a get the value 2, otherwise the value 1.
var: b: bin; Same as in the previous example.
par: { b: a :=2; |: a :=1; }
var: b: bin; Same as in the previous example.
par:
a := 1;
{ b: a +=1; }

Note that in the previous examples the parameter a is not of the data type integer, because its integer
value is depending on the decision variable and not known in cmpl. Instead of the parameter a get a value
of data type formula.

CMPL 2.1.0 - Manual 30

Such a value of data type formula can be used in arithmetic operations and in constraints. But it cannot be
used for sets or iterations, so in the example "s := 1..a;”or™{ @i in 1..a: ... }” would be erro-
neous.

In some cases one may use a symbol not for a parameter of the optimization problem, but for control within
cmpl. For that you can make an assignment independent from the conditions over decision variables, with
the assignment attribute nocond:

var: b: bin; al gets data type formula and its value is dependent
par: from the decision variable b.
al = 1; But a2 is simply an integer and gets the value 2.
a2 = 1;
{ b:
al += 1;

nocond a2 += 1;

}

var: b: bin; Same as in the previous example, because the incre-
par: ment operator ++ and the decrement operator -- are
al :=1; executed with nocond by default.
a2 :=1;
{ b:
al += 1;
a2++;

2.1.6.8 Specific control structures

As already described, code blocks can be used to emulate the various control structures known
from other programming languages. The most important control structures are described below.

For loop

A for loop is defined by code block with at least one iteration header. The code block body contains user-
defined instructions which are repeatedly carried out. The number of repeats is based on the iteration
header definition.

Examples:
{ @1 in 1(1)3 : .. } Loop counter i with a start value of 1, an increment of
1 and an end condition of 3
{ @i in 1..3 : ..} Alternative definition of a loop counter; loop counter i

with a start value of 1 and an end condition of 3. (The
increment is automatically defined as 1)

products:= set("pl", "p2", "p3");

hours[products] :=(20,55,10) ;
{@1 in products: For loop using the set products returning
echo ("hours of product " +

user messages hours of product: pl : 20

CMPL 2.1.0 - Manual 31

i+ " "+ hours[i]):;

}

hours of product: p2 : 55
hours of product: p3 : 10

}

{@i in 1(1)2: Definesa[1,2] = 3,A[1,4] = 5,A[2,2] = 4and
{@3 in 2(2)4: A[2,4] = 6
Ali,J] =1 + 3J;
}
}
a := set([1,1],1[1,2],102,2],103,2]); | k isiterated over the 2-tuple set a
bla] := (10, 20, 30 , 40);
The following user messages are displayed:
{ @k in a: echo (k + ":"+ b[k]); } | [1, 11:10
[1, 2]1:20
[2, 21:30
[3, 2]1:40
Several loop heads can be combined. The above example can thus be abbreviated to:
{@i in 1(1)2, @3 in 2(2)4: Defines A[1,2] = 3, A[l1l,4] = 5, A[2,2] = 4
Ali,3) =1 + 3; anda[2,4] = 6

{@i in 1(1)5,
Ali,j] :=

@3 in 1(1)i:
i+ 3

Definition of a triangular matrix

If-then clause

An if-then consists of one condition as code block header and user-defined expressions which are executed if
the if condition or conditions are fulfilled. Using an alternative non-conditioned body the if-then clause can

be extended to an if-then-else clause.

Examples:
{@i in 1..5, @j in 1..5:
{1 =3J: A[i,3] :=1; } Definition of the identity matrix with combined loops
{1 !=3: ali,3] = 0; 3} and two if-then clauses
}
{@i in 1..5, @j in 1..5:
{1 =3 Ali,J] :=1; Same example, but with one if-then-else clause
| : Ali, 3] := 0; }
}
i:=10; Example of an if-then-else clause
{ 1i<10: echo ("i less than 10"); It returns user message i greater than 9.
| : echo ("i greater than 9");
}
{1=3:11: 2} Conditional expression that results the value 1 if i=7,

otherwise the value 2.

Switch clause

Using more than one alternative body the if-then clause can be extended to a switch clause.

CMPL 2.1.0 - Manual

32

Example:

i:=2; Example of a switch clause that
{ i=1: echo ("i equals 1"); returns user message i equals 2.
| i=2: echo ("i equals 2");
| i=3: echo ("i equals 3");
| echo ("any other value");
}
While loop

A while loop is defined by a code block with a condition header and using the repeat command within the

code block body. The body contains user-defined instructions which are repeatedly carried out until the con-

dition in the header evaluates to false.

Examples:
i:=2; While loop with a global parameter that defines A[2] =
{i<=4: 2, A[3] = 3 andA[4] = 4.
Ali] := 1i;
i += 1;
repeat;
}
{: a ::=1; While loop using a local symbol defined in an outer code
{a < 5: block that returns user messages 1
echo (a); 2
a += 1; 3
repeat; 4.
}
}
{: a ::=1; Alternative formulation:
{@x: This code block uses a reference code block symbol x. It
echo (a); is necessary, because it is needed as reference for the
a +=1; break statement in the inner code block. (Without this
>=4: b k x; .
ta reak x7} reference the break statement would refer to the condi-
repeat;

tion a>=4)

Function definition

A code block can define a function. A function always has exactly one argument. Since this argument can be
an array of any number of elements, this is not a restriction. The elements of the argument array can be of
any data type and object type, as can the return value. They can therefore also be decision variables or con-

straints.

CMPL 2.1.0 - Manual

33

Examples:

{ @i of S$arg:
res += S$argl[i] * S$Sarg[il; }
return res;

b

square := &{ Defines a function that squares each element of the ar-
@i of Sarg: Sarg[i] * Sarg[i] gument array and returns these results as a result array.

bi e.g.: square (3, 4, 7) resultsto (9, 16, 49)

square_sum := &f{: Defines a function that squares each element of the ar-
res ::= 0;

gument array, sums these results, and returns the sum
as the result.

e.g.: square sum(3, 4, 7) resultsto 74

@f = Sarg[l], @a = S$argl[2,]:
{ Qi of a: f(al[il]) }

fib = &+{ Defines a recursive function that returns the n® number
Sarg <= 2: 1 of the Fibonacci sequence for an argument n. The defini-
|+ fib(Sarg-1) + fib(varg-2) tion with &+ { } is necessary so that the symbol
Vi fib defined outside the function body can be accessed
inside the function body.
e.g.: fib(8) resultsin 21
map := &f{ Defines a function that receives another function as its

first argument and applies that other function to the ele-
ments of the array passed as its second argument.

e.g., using the fib function shown above:

map (fib, (3, 4, 7)) resultsin (2, 3, 13)

e.g., using an anonymous function:

map (&{: 2*$arg}, (3, 4, 7)) resultsin

(6, 8, 14)

fixcosts := &{

@v = $argl[l],

@f = Sargl[2],
@m = S$Sargl[3]:
{ £ == 0: return 0; }

local var b := binary;
con v <=m * b;
return f*Db;

}i

obj:
sum{ Q@i of x:
cl[i]*x[1]
-fixcosts (x[1], fc[i], mx)
} -> max;

Defines a step-fixed cost function to be used for a de-
cision variable. The first argument is the decision vari-
able, the second is the step-fixed cost and the third is a
large value at least as high as the upper bound of the
decision variable.

An additional binary variable is created in the function,
as well as a constraint that sets this binary variable to 1
if the decision variable has a value greater than 0. The
term representing the step-fixed costs is returned.

This function can be used in an objective function. For
example, in a production planning problem, let x be the
vector containing the decision variables, ¢ be the a vec-
tor of the profit contributions per unit and fc be the vec-
tor containing the associated step-fixed cost. Let also mx
be a number greater than or equal to the largest upper
bound of x.

CMPL 2.1.0 - Manual

34

2.1.6.9 Multithreading

The option -threads n can be used to determine how many threads CMPL may use. If more than one thread
is allowed, then a maximum of this many threads are used for parallel execution for iterations in a code
block.

If the iteration steps are to be executed sequentially in their order, the ordered attribute must be used in the
definition of the code block symbol for the iteration.

Examples:

{ @1 in 1..10: echo(i); } When using multiple threads, the output is in unordered

sequence.
{ ordered @i in 1..10: echo(i); } Regardless of how many threads are allowed, the output

is guaranteed to be in order from 1 to 10.

Caution: Multithreading is an experimental feature. Errors may occur when using it. Therefore, the number
of threads is currently set to 1 by default.

2.1.7 Names for rows and columns

2.1.7.1 Name prefix

When defining decision variables or constraints or objective functions, the name and index tuple of the CMPL
symbol are used to name the column or row in the LP problem matrix. If a constraint is not assigned to a
CMPL symbol, it is automatically given a name in the LP problem matrix. This behaviour can be adjusted by
a name prefix.

Usage:
‘nameprefix { ..} Sets the name prefix effective for the execution
of the code block.
‘nameprefix statement; Sets the name prefix effective for the execution

of the statement. Especially useful if the state-
ment is a function call.

If a name prefix is used in the definition of a decision variable or a restriction, then:

« The name for the column or row is composed of the name prefix and the CMPL symbol name. If a
constraint is not assigned to a CMPL symbol, then the name prefix alone forms the name.

« If the index tuple for the name of the column or row is composed of the current values of all sur-
rounding iterations and the index tuple of the CMPL symbol.

Name prefixes can be nested. The effective name prefix is then composed of all specified name prefixes. A
command line option can be used to determine whether a separator string is placed between the parts in
this composition.

CMPL 2.1.0 - Manual 35

Examples:

var: The 3 constraints get the names aaa[11],
x[1..3], y[1..3]; aaa[2] and aaa[3]

con:
‘aaa { @i in 1..3: x[1] <= yI[i]l; }

var: The 3 constraints get the names aaacc[1],
x[1..3], y[1..3]; aaacc[2] and aaacc[3]

con:

‘aaa {: cc: x <= vy; }

var: The 4 constraints get the names
x[1l..2, 3..41, yIll..2, 3..4]1; aaabbb[1, 3], aaabbb[2, 3],
con:

aaabbb[1l, 4] and aaabbb[2, 4]
‘aaa { Q@i in 1..2:

bbb { @j in 3..4: x[1i,]3] <= yI[i,31; };

var: Definition of two variables with CMPL symbol

‘a x[1..2] := int; name x[1] and x [2], but column name in
the LP problem matrixis a[1] and a[2].
Note the assignment operator := if you use
: then the column names would be ax[1]

and ax[2]
fct := &{: local var x[1..2]; .. }; Defines a function which uses two decision

variables x[1] and x[2].

{ @1 in set("a", "b"):
Tf1 fet () ;
“f2 fct ()

The function is called 4 times. Without a
name prefix it would be an error because
the use of the same names for different
columns in the LP problem matrix.

Using a name prefix the columns get the
names flx[a,1l], flx[a,2],
f2x[a,1], f2x[a,2], flx[b,
flx[b,2], f2x[b,1 [

1],
1, £2x[b, 2]

For compatibility with the previous version of CMPL, the name prefix before a code block may also be spe-
cified without an introductory *. However, this is only possible if the name prefix does not correspond to a
defined CMPL symbol, as otherwise the construct would syntactically correspond to a function call.

2.1.7.2 Explicit control of the name prefix

The currently effective name prefix can be obtained within CMPL with ScurDestName. It is also possible to
set or delete the name prefix:

$curDestName Special symbol for reading and setting the currently effective name prefix.
When reading, the effective name prefix is returned as a string, regardless of
whether it was set with *nameprefix or was previously set with ScurDest-

Name. If no name prefix was set, null is returned.

CMPL 2.1.0 - Manual 36

When set, the new value remains effective until the end of the innermost code
block body in which the setting is executed or, if necessary, until it is set again
within the code block body. The effectiveness also extends to called functions.

With regard to the index tuple that becomes effective when the name prefix is used for name generation,
there is a difference between setting the name prefix with “nameprefix and setting it via $ScurDest-
Name. If setting via scurDestName is relevant for the effective nameprefix, then only the current values of
iterations started after setting with $curDestName are included in the index handle.

Other special symbols in this context are:

$curTuple Gets the current tuple of the innermost iteration
$curFullTuple Gets the current tuple of all iterations
$ScurDestTuple Gets the tuple of all iterations up to the innermost iteration, in which

$ScurDestName is set. If ScurDestName is never set, then equivalent to
ScurFullTuple.

This tuple prefixes the index tuple in names for new columns or lines in the LP
problem matrix.

Examples:
var: The 3 constraints get the names a1, a2 and a3
x[1..31, yl[1..3]; Note the assignment with : := to ScurDestName. This is
comro necessary, because in an assigment with := within a con
t iiuigeitNime s w4 1 section it would be tried to convert the right hand side of the

. . assignment to a constraint.
x[1] <= yI[i];

var: Also the 3 constraints get the names a1, a2 and a3

con:

"a { @i in 1..2:
ScurDestName += i;
x[1] <= yl[il];

}

echo (ScurDestName) ; prints: null
{ @1 in 1..1:

ScurDestName += "a";

echo (ScurDestName) ; prints: a

{ @ in 2..2:
ScurDestName += "b";
‘c { @k in 3..3:

echo ($curDestName) ; prints: abc
echo ($curDestTuple) ; prints: [3]
)

echo (ScurFullTuple) ; prints: [1,2, 3]

}

echo (ScurDestName) ; .
prints: a

CMPL 2.1.0 - Manual 37

2.1.7.3 Explicitly set the name for rows and columns

The name, including the index multiple for rows and columns in the LP problem matrix, can also be set com-
pletely independently of the name in CMPL. The following special symbols can be used for this purpose:

0.$destName Gets or sets the name for the column or line in the LP problem matrix rep-
resented by o, which must be a scalar value of object type var, con or obj.
e.g.if var: x[1..5];

then x[1].S%destName resultsto "x"

and x[1].%destName := "X#";

change its name in the LP problem matrix to x#1[11].
0.$destTuple Gets or sets the index tuple for the column or line in the LP problem matrix

represented by o, which must be a scalar value of object type var, con or

obj.

e.g.if var: x[1..5];

then x[1].$destTuple resultsto [1]
and x[1].SdestTuple := ["a", "b"];

change its name in the LP problem matrix to x[a,b].
0.$destNameTuple Gets or sets the name and the index tuple (both together within a tuple) for

the column or line in the LP problem matrix represented by o, which must

be a scalar value of object type var, con or obj.
e.g.if var: x[1..5];

then x[1].%destNameTuple resultsto ["x", 1]
and x[1].%destNameTuple := "X#1";

change its name in the LP problem matrix to x#1.
0.$destFullName Gets the name and the index tuple (together as a string) for the column or

line inthe LP problem matrix represented by o, which must be a scalar

value of object type var, con or obj.
e.g.if var: x[1..5];
then x[1].%destFullName resultsto "x[1]1"

2.1.8 Extensions of CMPL

2.1.8.1 Logical constraints

In a linear optimisation model, a constraint consists of an inequality or an equation. In CMPL, however, it is
also possible to specify any logical combination of equations and inequalities as a constraint. Such a con-
struct is then suitably transformed using automatically added binary variables.

CMPL 2.1.0 - Manual 38

Relevant operators and functions:

&& AND operator: Both equations or inequations must be satisfied.

and(..) AND function: All equations or inequations that are given as an argument array
have to be satisfied.

| OR operator: Only one of the two equations or inequations linked must be ful-
filled.

OR function: Only one equations or inequations that are given as an argument
array have to be satisfied.

Negation: the equation or inequality must not be fulfilled.

Bracketing can be used to form arbitrarily complex logical constructs.

< These comparison operations are not possible in a linear optimisation model. But
CMPL allows them by automatically considering them as negations. For example,
CMPL processes x < yas ! (x >= y).

In addition to equations and inequations, single binary variables can also be used in logical operations as
Boolean values. If b is defined as a binary variable, then the use of b in place of an equation or inequation
in a logical operation is considered to be the equation b = 1.

Examples:
var: x, y: real; If x is greater than 0, then it must also be greater than
con: x >=y || x = 0; or equal to the value of y.
var: x: real;

con: or(x =

(1, 2.4, 5.6));

The variable x may only take the values 1, 2.4 or
5. 6. To do this, an array of three equations is first

formed, which are then linked with a logical OR.
If the variable b is equal to the value 1, then x must be

real; b: bin;
('b && x < vy);

var: x, y:

con: (b && x > y) || greater than . If, on the other hand, b takes the value

0, then x must be less than vy.

2.1.8.2 Products of decision variables

In CMPL, products of decision variables can be used. These can either be passed directly to the solver if the
solver supports quadratic optimisation QP (Cplex, Gurobi, Scip). Or they are linearised by CMPL if in one of
the operands is binary or integer.

Examples:

var: X:

real; b: bin; Product with a binary variable

con: x*b <= 10;

return p;

b

con: prod(a)

var: al[l..5]:

int[0..3];
<= 100;

var: a, b: int[0..5]; Products of integer variables

con: (a + b)”"2 <= 100;

prod := &{: Definition of a function that multiplies all elements of its
p :=1; argument array with each other. This function can be
{ 1 of Sarg: p *= Sarg[i]; }

applied to use the product of the variables of an array in
a restriction.

CMPL 2.1.0 - Manual

39

2.1.8.3 Container values and class-like constructs

In CMPL, the special data type container is available. Data objects of this type do not directly contain values
themselves, but instead subordinate symbols that can contain any values, arrays, or other containers. The
subordinate symbols are addressed via a point as operator .

Examples:

myfunctions.fctl

myfunctions. fct2

= &{ ..
= &{ ..

myfunctions.fctl (..);

myfunctions := container();

}s
b

Similar to namespace: Defines a new container object
and assigns it to the symbol myfunctions.

Defines functions in the container.

Calls a function.

cll]l.a := (1, ,
cl[2].a = (3, ’
c[3].a = (6, ’

container c[1..3];

Similar to struct in C:
Defines three new container objects and assigns them
to an array c.

Defines a child symbol a in each of the containers and
assigns an array to it.

Accesses the second container, therein the third ele-
ment of the array a and outputs the value 5.

CMPL also offers possibilities for the class-like use of container objects, as known from object-oriented pro-
gramming. The following language elements are available:

class.construct (..

)7

Function for creating a class-like container object. A
constructor-like function is to be given as an argument
to this function, which defines the instance variables
and instance functions of the class. If a second argu-
ment is given, this is passed on as an argument to the
constructor function.

Sthis

Access to the container that contains the instance of the
class. Access to instance variables and instance func-
tions must always take place via it.

as_string

If a class defines an instance function with this name, it
is implicitly called when the container is converted to a
string. This is particularly useful to be able to simply
output a suitable textual representation of the class ob-
ject with echo ().

as_var If a class defines an instance function with this name, it
is implicitly called when the container is converted to
decision variables.

as_con If a class defines an instance function with this name, it

is implicitly called when the container is converted to a
constraint.

CMPL 2.1.0 - Manual

40

as_obj If a class defines an instance function with this name, it
is implicitly called when the container is converted to an
objective function.

In the following, a class for the Fibonacci sequence is given as an example. The sequence calculated so far
is stored in the class. If an element is queried that has not yet been calculated, the sequence is extended.
// constructing function for the class
fibcl := &{:
private par:
// stored values, initialized with first two elements
$this. fib[1..2] := 1;
// count of computed elements
$this. maxind := 2;
// name for this object, given as constructor argument

$this. name := $arg;

// function to compute values up to given element number

$this.compute := &{ Sarg > Sthis. maxind:
{ 1 in ($this. maxind+l) .. S$Sarg:
Sthis. fib[i] := S$this. fib[i-1] + S$this. fib[i-2]; }
$this. maxind := $arg;
}i
public par:
// function to get value for given element number
$this.get := &{:

// if element is not stored yet then compute it
{ Sarg > Sthis. maxind: $this.compute (Sarg); }
return $this. fib[Sarg];

}i

// function to get info string
$this.as_string := &{:
"Fibonacci " + $this. name + " computed up to element " + $this. maxind
}i
}i
// construct two objects of the class
fibobjl := class.construct(fibcl, "Fibl");
fibobj2 := class.construct(fibcl, "Fib2");

// get value of element number 20, outputs 6765
echo (fibobjl.get (20)) ;

// outputs info string for the class object

echo (fibobjl) ;

// outputs info string for the second class object

echo (fibobj2) ;

CMPL 2.1.0 - Manual 41

2.1.8.4 Special ordered sets

Classes for SOS and SOS2 are predefined in CMPL. The following functions are available for creating the ob-
jects for these:

sos.sosl(); Constructs an object for one new SOS1. Returns the container ob-
ject representing the SOS. Decision Variables must be added sub-
sequently to this object by member function add.

sos.sosl (varl, var2z, ..); Constructs an object for one new SOS1 over the given decision
variables. Returns the container object representing the SOS.
sos.sosl (ds, tp); Constructs an object for a new SOS1 with new decision variables

to be created. An array of decision variables is created via the
definition set ds with the data type tp. Returns the container

object that represents the SOS.
50s.s0s52(); Same construction functions for a new SOS2
sos.sos2 (varl, var2, ..);

sos.sos2 (ds, tp);

The objects have the following member functions:

name Sets the name that is used in the linearisation of the SOS. The ar-
gument is a string. For SOS2 it can also be two strings, the second
one being used in the linearisation of the sequence restriction of
the SOS2. Returns the container itself.

add Adds decision variables to the SOS. One or more decision variables
can be passed as arguments. Returns the container itself.
as_var Returns the decision variables from the SOS. This function is not

called directly, but is used to be able to use the SOS object itself
in variable definitions.

ord Returns a consecutively assigned number of the SOS object.
Examples:
var: Creates an SOS of five new variables.
x[]: sos.sosl([1..5], real[0..10017);
var: Creates an SOS2 of ten new variables
y[]: sos.so0s2([1..10], real).name("test"); with the name test.
var: Defines 3 variables and then create a
a, b, ¢: int[0..100]; new SOS over these variables and give a
sos.sosl (a, b, c).name("test2"); name to the SOS.
var:
xm[1l..5, 1..10]: real; Defines a matrix of variables.
par:
{1iin 1..5: For every row of the matrix an SOS is
sli] := sos.sosl(); created with the name S0S row 1,
i]. "S0S "o+ i) . L
° [%] name { _ —1ov +) SOS_row_2, .. .Each variable in this
s[i].add (xm[i,]); o
) row are added to the SOS.

CMPL 2.1.0 - Manual 42

CMPL handles SOS in two ways. If the solver invoked does not support special ordered sets directly then the
SOS are linearised in the form of suitable constraints. Otherwise the SOS are passed directly to the solver
(e.g. Cplex, Gurobi, Cbc and Scip) via the generated Free-MPS file.

2.1.8.5 Other model reformulations

CMPL performs the following simple model transformations by default:

Constraints without decision variable

This case can occur if the constraint actually contains no variable or the variables are multiplied by
parameters equal to zero. In addition, it is possible that logical operations in a constraint show that
the satisfaction of the constraint does not depend on the specified decision variables. In these
cases, the constraint is trivially always satisfied or can never be satisfied.

Such a constraint is automatically supplemented by an additional decision variable so that it can be
included in the LP problem matrix and appears in the result. If the restriction can never be satisfied,
this decision variable is restricted accordingly.

Alternatively, CMPL can remove trivially always satisfied constraints and issue an error message for a
constraint that can never be satisfied.

Constraints with only one decision variable
A constraint with only one decision variable can be replaced by a bound for this decision variable.

By default, this is only done for unnamed constraints. Named constraints, on the other hand, remain
unchanged so that they can be included as a row in the LP problem matrix and appear in the result.

Alternatively, either all or none of such constraints can be replaced by bounds.
Decision variables not used in any constraint

If a decision variable is defined but not used in any constraint, this decision variable has no meaning
for the optimisation and is not given a value.

By default, CMPL removes such decision variables. However, if the decision variable does not appear
in any constraint only because such constraints were removed by the previous transformations, an
additional constraint is created for the variable instead so that the variable is included as a column in
the LP problem matrix and appears in the result.

Alternatively, either all decision variables not used in constraints can be omitted or an additional
constraint is created for all of these decision variables.

CMPL 2.1.0 - Manual 43

2.1.9 Short Language reference

Attributes

public Specifies the validity scope of the symbol defined in the assignment

private

local

const The symbol is write protected.

ref Creates a reference to another symbol

new Even if the assigned symbol already exists, a new symbol is defined that
hides the original symbol.

ordered Ordered execution without parallel threads. Currently only effective for itera-
tions within a code block.

extern Assigns values from an external source. Mainly for internal use

assert Assert condition for symbol definition. Mainly for internal use

declare Declaration of symbol name

initial Performs an assignment only the first time.

break Control commands for code blocks

continue

repeat

return

Literal values

number Value of data type real or int.
"string" Value of data type string.
If the string contains double quotes, they have to be escaped with \~.
true Literal values of data type bin
false

Special values

inf

Infinite value of data type real

invalid

Marker for a non existing value

null

Empty array

(omitted value)

« After unary operators * and /:
Converted to the set of all index tuples with rank 1.
« Within tuple construction:
Converted to the full set of all possible index tuples of all ranks.
« Within array construction:
Marks a non existing element (equivalent to nul1).
« Within interval construction:
Converted to the infinite value (equivalent to -inf (on the left side of
operator ..)orto inf (on the right side of ..)

CMPL 2.1.0 - Manual

44

Object types (also usable as convert functions)

var Decision variables (columns within the linear programming model)
variables

obj Objective functions (neutral rows within the linear programming model)
objectives

con Constraints (restricted rows within the linear programming model)
constraints

par Everything else ...

parameters

Data types (also usable as convert functions)

real Floating point number (uses internally C data type double)
The literal value consists of digits, decimal point and optional exponent.
int Integer number (uses internally C data type 1ong).
integer The literal consists only of digits.
bin Numeric value that can only be 0 or 1 (subtype of int)
binary It can also be used as boolean value.
The literal values are true (value 1) and false (value 0).
numeric Union type for real and int
formula An expression of parameters and decision variables
Note that a formula is not a constraint, but a suitable formula can be conver-
ted into a constraint.
string Character string
Th literal value is enclosed in double quotes.
indexpart Union type for int and string
interval Interval between two numeric values
If one or both bounds are omitted, the interval on this side is unbounded.
tuple Tuple of an arbitrary number of elements (also no element) with any data
type
A special kind of tuple is an index tuple, which consists only of elements of
the data type indexpart.
set Set of an arbitrary number of elements (also no element). All elements must
be index tuples.
function Function object, constructed by &{ .. }
container A value that contains other symbols (similar to struct or class in C)
type Data type
objecttype Object type

Assignment operators (assignments can only be used as statements, but not as part of other

expressions)

u = vy Declares symbol u, if not already declared. Assigns value v (converted ac-
cording to the attributes) to the symbol wu.
u v; Declares symbol u, if not already declared. Assigns value v (converted ac-

cording to the attributes) to the symbol u. The object type of converted
value v must be var, obj or con. The row or column in the resulting LP
problem matrix is named according symbol u.

CMPL 2.1.0 - Manual

45

(Besides being used as an assignment operator, the colon is also used as a
separator).

u = vy Declares symbol u with 1ocal validity scope, if not already declared. As-
signs value v (without conversion according to the attributes) to the symbol
u.

u += v; Performs given operation (+, -, * or /) on values u and v (without con-

u-=vy version according to the attributes). Assigns the result to symbol wu.

u *= v;

u /= v;

u;

Assignment without given right hand side.

Declares symbol v, if not already declared. A default value of an object type
is assigned to the symbol u. If not specified by attribute the default value for
paris invalid and the default value for var is real. Other object types
do not have a default value. For object type var the column in the resulting
LP problem matrix is named according symbol u.

Increment and decrement operators

++u Increments or decrements the value of symbol u and then gives the result-
—Tu ing value. The symbol u must be a symbol with a scalar int value.
This operation is guaranteed to be atomic when used with multi-threading,
while an assignment such as u += 1; is not guaranteed to be atomic.
utt Gives the current value of symbol u and then increments or decrements the

value of the symbol. u have to be a symbol with a scalar int value.

This operation is guaranteed to be atomic when used with multi-threading,
while an assignment such as u += 1; is not guaranteed to be atomic.

Computational operators

u+ v

Adds both operands. Operands can be:
*+ numeric or formula: numerical addition
« string: string concatenation
« set:setunion
« null: the other operand is the result
If the operands are arrays, the operation is performed for each element.

Positive sign for the operand. Operand can be:
* numeric Or formula: humerical sign
+ null: theresultis null
If the operand is an array, the operation is performed for each element.

Subtract the second operand from the first. Operands can be:
+ numeric or formula: numerical addition
- set: set of all elements of u which are not contained in v
« null: the other operand is the result
If the operands are arrays, the operation is performed for each element.

Negative sign for the operand. Operand can be:

CMPL 2.1.0 - Manual

46

* numeric Or formula: humerical sign
« null: theresultis null
If the operand is an array, the operation is performed for each element.

Multiplication of both operands. Operands can be:
¢+ numeric or formula: numerical multiplication
« set: setintersection

*y

Converts value u to a set. Value must be indexpart or an index tuple (or
already a set).

e.g. *1 resultsto set (1)

If it is used before a bracket, then the constructed array receives a definition
set[1..], even if it contains only one element.

E.g. *(7) results in an array with one element and definition set *1.

ul/ v

Division. Both operands must be numeric. The data type of the result value
is always real, even if both operands are int.

Operand must be a set (or already an indexpart). If the value is a set
with only one element, it is converted to that element. If the value is an-
other set, then it is marked, so that in a match operation or an indexation
operation with this set the corresponding part of the index is removed from
the result.

e.g. set([1,1], [2,31, [4,2]) *> [*, /set(l,2)] resultsto
set (1, 4)

If it is used before a bracket, then the constructed array gets a definition set
[*null].

e.g. /(7,) results to an array with one element and definition set
[*null].

To the power of. The second operand must be numeric.The first operand
can be numeric or formula. If first operand is a formula, then second
operand must be a non-negative int.

Transpose an operand array. Only for use in matrix multiplication.
If T follows directly after a closing square bracket, then ~ can be omitted
(e.g. a[]T isequivalentto a[]1"T).

Comparison operators

u=v
>= v
<= v
<> v
> v
< v
= v

[~I i i v Wi

ul=v

Equal to

Greater than or equal to

Less than or equal to

unequal

Greater than

Less than

Total equality. The full operands are checked (not the elements of arrays),
result is scalar bin.

Negated total equality. The full operands are checked (not the elements of

arrays), result is scalar bin.

Logical operators

CMPL 2.1.0 - Manual

47

u && v Combines both operands by logical And.
Operands must be convertible to bin, or be a formula with a boolean
value.

ull v Combines both operands by logical Or.

Operands must be convertible to bin, or be a formula with a boolean
value.

'u

Logical negation of the operand.
Operand must be convertible to bin, or be a formula with a boolean value.

Construction operators

(u, v, ..)

Array construction from elements. There can be any number of elements, in-
cluding zero.

[u, v, .. 1]

Tuple construction from elements. There can be any number of elements, in-
cluding zero.

Interval construction between lower and upper bound. Bounds must be nu-
meric (or inf). One or both bounds can be omitted.

u(v)w

Constructs a set with elements from u to w with increment/decrement v.
All operands must be int.
€.g. 1(3)10 resultsto set (1, 4, 7, 10)

Set and array operators

sl *> s2 Matching operation. Performs the intersection between both sets, and re-
moves then such parts from the tuples of the result set, which correspond to
parts of s2, which are no set or are marked with the unary / operator.

t in s Checks whether an index tuple ¢ is element of the set s, result is bin.

@t in s For all tuples ¢ inset s.
Only usable as a code block header.

t of a Checks whether an index tuple t is element of validset (a), resultis
bin.

@t of a For all tuples t in validset (a).

Only usable as a code block header.

Optimisation sense operator

£ ->d

Specify the optimisation sense for the formula £. Only the values min and
max are permitted.
The result is a formula, which can be used as objective function.

Empty operator (two expressions directly adjacent, the operation is chosen by the token type)

n s n is a literal number, and s a symbol: equivalentto n*s

£ (..) Function call: The second expression constructs an array, then the function
£ is called with that array as argument.

r{.1} Function call: The code block given as second expression is evaluated, then

CMPL 2.1.0 - Manual

48

function £ is called with the code block result as argument.

al[..]1]

Indexing: The second expression constructs an index tuple or a tuple set,
then array a is indexed with that tuple or set.

But if the value of the expression a is a scalar data type, then the tuple is
used for data type restrictions, instead of indexing. In this case, the tuple
doesn't need to be an index tuple, but must be suitable to restrict the data

type.

a

Array cast: The first expression constructs an index tuple or a tuple set, then
the definition set of array a is changed to this tuple or set.

code blocks

Other syntactic elements:
{ ..}
I
&
&+

Includes a code block.
Separates the parts of a code block
Only permitted directly before a code block: The code block is not evaluated

directly, but a function pointer to the code block is given.
Like &, but the code block gets access to public symbols.

separators

Other syntactic elements:

4

Completes a statement
Separates elements of lists:

« elements in array construction

« elements in tuple construction

« multiple left sides in an assignment
« multiple code block headers

Ends a header:
« section header

« code block header
Separates container value from contained part.

To the left of this must be a value that contains parts. Such a value is either
of data type container or of object type var, obj or con.
To the right of it must be the name of the contained part.

Other syntactic elements:

symbol markers

@s

\s

Only usable in code block header: Marks symbol as a new defined code block
symbol.

Needed only if s is already a defined symbol.
Can only be used with code block control commands: Marks that the symbol

is to be used as a reference for the code block (instead of using it as an ex-
pression).
Only needed in rare cases when without it both interpretations would be syn-

tactically correct.
Can only be used directly before a code block. It marks that s is to be used

CMPL 2.1.0 - Manual

49

as name prefix for naming of rows and columns in the LP problem matrix (in-
stead of using it as function name).
Only needed if s is already a defined symbol.

Comments
// comment up to end of line
#
/* .. */ comment between /* and */

Special symbols

Sarg

Returns argument array within a function

$this Returns container object in which a member function is called

$curTuple Returns the current tuple of the innermost iteration

$curFullTuple Returns the current tuple of all iterations

$curDestName Returns or sets the current name prefix for new columns or lines in the LP
problem matrix. A setting is only effective up to the end of the current inner-
most code block, then the previous value is restored.

$curDestTuple Returns the tuple of all iterations up to the innermost iteration, in which

$curDestName is set. This tuple prefixes the index tuple in names for new
columns or lines in the LP problem matrix.

o0.$%destName

Returns or sets the name for the column or line in the LP problem matrix
represented by o, which must be a scalar value of object type var, con or
obj.

e.g.if var: x[1..5];

then x[1].S%destName resultsto "x"

and x[1].%destName := "X#";

changes its name in the LP problem matrix to x#[1].

0.$destTuple

Gets or sets the index tuple for the column or line in the LP problem matrix
represented by o, which must be a scalar value of object type var, con or
obj.

e.g.if var: x[1..5]; then x[1].$destTuple resultsto [1] and
x[1] .8destTuple := ["a", "b"]; changes its name in the LP prob-
lem matrix to x[a,b].

0.$destNameTuple

Gets or sets the name and the index tuple (both together within a tuple) for
the column or line in the LP problem matrix represented by o, which must
be a scalar value of object type var, con or obj.

e.g.if var: x[1..5];

then x[1].$destNameTuple resultsto ["x", 1]

and x[1].$%destNameTuple := "X#1";

changes its name in the LP problem matrix to x#1.

o0.$%destFullName

Gets the name and the index tuple (together as a string) for the column or

CMPL 2.1.0 - Manual

50

line in the LP problem matrix represented by o, which must be a scalar
value of object type var, con or obij.

e.g.if var: x[1..5];

then x[1].$destFullName resultsto “x[1]”

o.$objectType Returns the object type of symbol or expression o.

0.$dataType Returns the data type of symbol or expression o.

o.$typeBase Returns the data type without type parameter of symbol or expression o.
o.$typePar Returns the type parameter tuple from the data type of symbol or expression

o. If the data type has no type parameter, it results to null.

Built-in functions for aggregating values

sum(a) Calculates a sum over all values of the argument array.
An operation is performed by the operator +, depending on the data type of
the operands.
max (a) Gives the maximum or the minimum value of the values in the argument ar-
min (a) ray. All values in the array must be numeric or interval. If a value is interval,
its upper (max) or lower (min) bound is used.
max These function names are also used for the objective sense at the end of an
min objective function.
and(a) All values of the argument array are combined by logical and or logical or. All
or(a) values must be either convertible to bin, or be a formula with boolean value.

Built-in functions for output

echo (a) Console output of the argument value. If the argument is an array, the val-
ues are separated by space.
error (s) Outputs an error message with the argument string and ends execution.

format(f,u,..)

Creates a formatted string from the values of the arguments u, .., using the
format string £. This is done by the C function sprintf, see its documentation
for the format string.

Built-in functions for sets and arrays

len(s)

Argument can be a set, a string, or an array of set or string values. Gives the
count of elements in the set (inf for an infinite set) or the count of charac-
ters in the string. If the argument is an array, it is done for every element of
the array and gives the results also as an array.

rank (s)

Returns the rank of the argument value. For a set of tuples with different
ranks the result is an interval. For values other than tuple or set the result is
ever 1. If the argument is an array, it is done for every element of the array
and gives the results also as an array.

defset (a)

Returns the definition set of array a

validset(a)

Returns the set of all index tuples of array a, for which a value exists in the
array (i.e. for which the value is not invalid)

CMPL 2.1.0 - Manual

51

If the array contains only valid values, then validset results the same as

defset.
valid(a) Checks if all elements of the array are valid. Equivalent to valid-
set (a)==defset (a)
def (a) Counts the elements of the array. Equivalent to len (defset (a))
count (a) Counts the valid elements of the array. Equivalent to len (validset (a))
array (s) Argument can be a set or a tuple. Returns an array of the elements of the set

or the parts of the tuple.
e.g. with tuple: array([1..2, 11) returns (1..2, 1)
e.g. with set: array(set ([1..2, 1])) returns ([1,1], [2,1])

Built-in mathematical functions

dim(a) Gives the first part of the last tuple of the definition set of the argument ar-
ray. For instance if a has the definition set [1..3, 1..5], then dim(a)
returns 3, and dim(a[1,]) returns 5.

div(c,d) Integer division or remainder of integer division. Both arguments must be

mod (¢, d) scalar integer numbers.

srand (x) Initialisation of a pseudo-random number generator using the argument x.
The argument must be a scalar number and is converted to int. Returns the
value of the argument x.

rand (x) Returns an integer random number in the range 0<= rand < x. The argu-
ment must be a scalar number and is converted to int.

sqrt(x) Square root function: The argument must be a scalar number and is conver-
ted to real.

exp (x) Exp function: The argument must be a scalar number and is converted to
real.

1n(x) Natural logarithm: The argument must be a scalar number and is converted
to real.

1lg(x) Common logarithm: The argument must be a scalar number and is converted
to real.

1d(x) Logarithm to the basis 2: The argument must be a scalar number and is con-
verted to real.

sin(x) Sine function measured in radians: The argument must be a scalar number
and is converted to real.

cos (x) Cosine function measured in radians: The argument must be a scalar number
and is converted to real.

tan (x) Tangent function measured in radians: The argument must be a scalar num-
ber and is converted to real.

acos (x) Arc cosine function measured in radians: The argument must be a scalar
number and is converted to real.

asin(x) Arc sine function measured in radians: The argument must be a scalar num-
ber and is converted to real.

atan(x) Arc tangent function measured in radians: The argument must be a scalar
number and is converted to real.

sinh (x) Hyperbolic sine function: The argument must be a scalar number and is con-

verted to real.

CMPL 2.1.0 - Manual

52

cosh (x)

Hyperbolic cosine function: The argument must be a scalar nhumber and is
converted to real.

tanh (x) Hyperbolic tangent function: The argument must be a scalar number and is
converted to real.

abs (x) Absolute value: The argument must be a scalar number.

ceil (x) Smallest integer value greater than or equal to a given value. The argument
must be a scalar number.

floor (x) Largest integer value less than or equal to a given value. The argument must
be a scalar number.

round (x) Simple round: The argument must be a scalar number.

Class support

class

Namespace for related functions

class.construct(f,a)

Constructs a new object of the class, using the class constructor function f,
which is given a as argument.

class.runat(c, f,a)

Calls the function r with argument a, with $this within the function set to
the container c.

class.copy(c) Creates a copy of the container ¢, by assignments all of its elements to the
new container.
class.refcopy(c) Like class.copy, but all assignments of the elements are made using

ref.

class.finalize(c)

Marks the container ¢ as final, which prohibits the creation of new ele-
ments in the container.

c.as_string

If an element as_string is defined in the container ¢, then it is called as
function when the container is converted to a string, for instance in

echo (c) ;

c.as_var If an element as_var is defined in the container c, then it is called as
function when the container is converted to decision variables, for instance
by using it within a var section.

c.as_obj If an element as_obj is defined in the container ¢, then it is called as
function when the container is converted to an objective function, for in-
stance by using it within a obj section.

c.as_con If an element as_con is defined in the container ¢, then it is called as
function when the container is converted to constraints, for instance by us-
ing it within a con section.

SOS support
sos Namespace for related functions

sos.sosl()

Constructs an object for one new SOS. Returns the container object repres-
enting the SOS. Decision Variables must be added subsequently to this object
by member function add.

sos.sosl(vi,v2,..)

Constructs an object for one new SOS over the given decision variables. Re-
turns the container object representing the SOS.

sos.sosl (ds, tp)

Construct an object for one new SOS with new created decision variables. An

CMPL 2.1.0 - Manual

53

array of decision variables with definition set ds is created, all having the

data type tp. Returns the container object representing the SOS.
sos.sos2() Same constructing functions for SOS2
sos.sos2(vi,v2,..)

sos.sos2 (ds, tp)

c.name (s) Assigns the name s to the SOS object c.

c.add(vi,vz,..) Adds the given decision variables to the SOS object c.

c.ord() Gives the internal number of the SOS object c.

c.as_var() Gives the decision variables belonging to SOS object c. Implicitly called if the

SOS object is used within a var section.

2.2 CMPL Header

2.2.1 CMPL Header elements

A CMPL header is intended to define CMPL options, solver options and display options for the specific CMPL
model. An additional intention of the CMPL header is to specify external data files which are to be connected
to the CMPL model. The elements of the CMPL header are not part of the CMPL model and are processed
before the CMPL model is interpreted.

The elements of CMPL header correspond to the command line options that can be used in the call to CMPL.
Exceptions are only those command line options that must already be evaluated before the CMPL file is read
and therefore cannot be used in CMPL header.

Each line for CMPL header starts with % as the first non-whitespace character. This is followed by the name
of the command line option (without the -, which introduces a command line option in the command line).
This is followed by the arguments of the command line option, separated by whitespace.

Alternatively, the line can begin with %arg. In this case, command line options and their arguments can be
specified as on the command line itself (i.e. with - in front of the name of the command line option). Several
command line options can then also be on one line.

There are the following minor differences in syntax between specifying options directly on the command line
or in the CMPL header:

« CMPL comments can also be used in CMPL header lines as desired.

« In the CMPL header, only double quotes can be used to enclose arguments that contain
whitespaces. Double quotes contained therein must be escaped with \. On the command line, how-
ever, the operating system-specific rules apply.

- Except for $arg, a value is also considered an argument if it begins with -. With %arg, on the other
hand, a new command line option is started with it, so that several command line options can be in
one CMPL header line. If the value is enclosed in double quotes, it is also considered an argument
with $arg.

CMPL 2.1.0 - Manual 54

Important uses of CMPL headers include specifying options for the solver and for the result display:

%$solver solverName

%$opt solverName solverOpt [solverOptVall]

%$display var|con=name[*] [, namel[*]]

%$display nonZeros

%$display ignoreCons

%$display ignoreVars

%display solutionPool

Specifies the solver
Specifies an option for a solver

Sets variable name(s) or constraint name(s) that
are to be displayed in one of the solution re-
ports. Different names are to be separated by
spaces.

If name is combined with the asterix * then all

variables or constraints with names that start
with name are selected.

Only variables and constraints with nonzero
activities are shown in the solution report.

Ignores constraints in the solution report. Only
variables are shown in the solution report.

Ignores variables in the solution report. Only
constraints are shown in the solution report.

Gurobi and Cplex are able to generate and store
multiple solutions to a mixed integer program-
ming (MIP) problem. With the display option
solutionPool feasible integer solutions found
during a MIP optimisation can be shown in the
solution report. It is recommended to control the
behaviour of the solution pool by setting the
particular Gurobi or Cplex solver options.

Examples:
$solver glpk GLPK is used as the solver.
$solutionAscii

CMPL writes the optimisation results in an ASCII
file.

%arg -solver cbc «
-url http://194.95.44.187:8008

CBC is to be executed on a CMPLServer located
at 194.95.44.187.

%opt cbc ratio=0.1

If CBS is the invokes solver then a MipGap of
10% is used.

%opt glpk nopresol

If GLPK is used then the pre-solver is switched
off.

%display var=x

Only the variable x is to be displayed in the
solution report.

%display con=x*,y*

All constraints with names that start with x or vy
are shown in the solution report.

2.2.2 Include

The command line option include can be used to specify a CMPL file to be included. It is particularly useful

to use this as a CMPL header, as the specified CMPL file is inserted at this point.

%$include fileName
CMPL file is located).

CMPL 2.1.0 - Manual

55

Includes the specified CMPL file (relative to the directory in which the current

If the file name contains spaces, then it must be enclosed in double quotes.

If the file name contains a directory specification, then / has to be used as
separator (independently of the operation system).

The following CMPL file parameters.cmpl is used for the definition of a couple of parameters:

c := (1, 2, 3); parameters.cmpl
b := (15, 20);
A := ((5.6, 7.7, 10.5),
(9.8, 4.2, 11.1));
par: Using include CMPL generates the following
%$include parameters.cmpl model:

1-x,+2-x,+3 ‘x5, - max!

var: s.t
xldefset(c)]: reall0..]; 5.6 x,+7.7 -x,+10.5 -x,<15
o 9.8 -x,;+4.2 -x,+11.1 -x,<20
obj: .
>0:7=
c"T * x -> max; x;205) 1{1)3
con:

A * x <= Db;

2.2.3 CmplData

2.2.3.1 CmplData in CMPL Header

CmplData is used to separate model and data in CMPL. The command line option data is used for this pur-
pose. The arguments of this command line option define parameters and sets for CMPL, whose concrete val-
ues are read from a CmplData file. It makes sense to use this command line option in the CMPL header, but
of course it can also be used on the command line itself.

Usage CMPL header for defining external data:

%data [filename] : [setl set/[[rank]l]] [, set2 set[[rankl] , ..]
$data [filename] : [paraml] [, param2 , ..]

$data [filename] : [paramarrayll[set]] [, paramarrayZ[set] , ..]

filename File name of the CmplData file
If the file name contains white spaces the name
must be enclosed in double quotes.

If filename is not specified the generic name
modelname.cdat Wwill be used, where model-
name.cmpl is the name of the cmpl file.

[setl set[[rank]]][,set2 set[[rank]], Specifies a set with the name set1 and the rank
] rank

CMPL 2.1.0 - Manual 56

Specification of the rank is optional. If specified,
then it must match the rank within the CmplData
file.

For more than one set the sets are to be separ-
ated by commas.

[paraml] [, param2 , ..] Specifies a scalar parameter
If more than one parameters are to be specified
then the parameters are to be separated by com-
mas.

[paramarrayllset]] [,paramarrayZ2[set],..] Specifies a parameter array and the set over
which the array is defined

For more than one parameter array the entries are
to be separated by commas.
The easiest form to specify an external data is $data. In this case a generic filename modelname.cdat
will be used and all sets and parameters that are defined in this file will be read.

If parameters and sets are specified in $data, then all definitions of the parameters and sets can be mixed
with another. But a set must be specified before it is used in a definition of a parameter array.

Any number of CMPL header lines can be specified, both for the same data file and for any number of other
data files.

Examples:
sdata myProblem.cdat: n set, aln] Reads the set n and the vector a which is defined
over the set n from the file myProblem.cdat
%data myProblem.cdat Reads all parameters and sets that are defined in the

file myProblem.cdat
sdata : n set[l], aln] Reads (assuming a CMPL model name

myproblem2.cmpl) the 1-tuple set n and the vector

a which is defined over n from myProblem2.cdat.
sdata Assuming a CMPL model name myproblem2.cmpl all

sets and parameters are to be read from myProb-
lem2.cdat.

sdata : routes set[2],costs[routes] | Assuming a CMPL model name myproblem.cmpl the
2-tuple set routes and the matrix costs defined over

routes are to be read from myProblem.cdat.

If data is used as a command line option directly on the command line, the corresponding definitions in-
cluding the file name can be specified altogether as a single argument string in double quotes. Even then,
this command line option can be used as often as desired.

CMPL 2.1.0 - Manual 57

2.2.3.2 CmplData file format

A CmplData file is a plain text file that contains the definition of parameters and sets with their values in a
specific syntax. The parameters and sets can be read into a CMPL model by using the command line option

data, for instance by using it in CMPL header.

Usage:

$name < numberOrString >

#text

scalar parameter

%name set[[rank]] < setExpression > # set definition

%name [set] [= default] [indices] < 1istOfNumbersOrStrings >

parameter array

comments

Excluding comments each CmplData definition starts with .

$name < numberOrString >

$name set[[rank]] < setExpression
>

%name [set] [= default] [indices]
< 1istOfNumbersOrStrings >

CMPL 2.1.0 - Manual

A scalar parameter name is assigned a single string or
number.

Definition of an rtuple set

A set definition starts with the name followed by the
keyword set. For r-tuple sets with /7>1 the rank of the
set is to be specified enclosed by square brackets.

For enumeration sets the entries of the sets are separ-
ated by white spaces and imbedded in angle brackets. It
is also possible to define algorithmic sets in normal CMPL
syntax.

Definition of a parameter array
The specification of a parameter array starts with the
name followed by one or more sets, over which the array

is defined. If more than one set is used then the sets
have to be separated by commas.

The set or sets have to be defined before the parameter
definition.

If the data entries are specified by their indices (keyword
indices) then a default value can be defined.

The data entries can be strings or numbers and have to
be separated by white spaces and imbedded in angle
brackets.

58

Examples:

If the data entries are specified by their indices then each
data entry has to start with the indices followed by the
value and separated by white spaces. A thousand separ-
ator is not to be used.

For real numbers, the decimal separator is always a dot,
regardless of the language used by the operating system.

If not so then the order of the elements are given by the
natural order of the set or sets.

%a < 10 >

Defines a scalar parameter a and assigns the
number 10.

%$s set < 0..6 >

s is assigned s 0,1,..., 6]

%$s set < 10(-2)4 >

s is assigned s €10,8,6,4|

%prod set < "bike 1"

%prod set < bikel bike2 >

"bike 2" >

1-tuple enumeration set of strings

%a set< 1 a 3 b 5 c¢c >
$x[a]l] < 10 20 30 40 50 60 >

1-tuple enumeration set of strings and integers
vector x identified by the set a is assigned an
integer vector

%$data : a set, x[a]

echo(x[1]);

echo(x["a"]);

{ ordered @i in a: echo(x[i]); }

reads the set a and the vector x into a CMPL
model

The following user messages are displayed:
10

20

10 20 30 40 50 60

%$n set < 1..3 >

sa[n,n] = 0 indices < 111 Defines a 3x3 identity matrix

221

331 >
%aln,n] < 1 0 . .

[] . Alternative formulation
>

$x set < 1..2 Definition of a data cube with the dimension
3y set < 1..2 X,V,2
%z set < 1..2

CMPL 2.1.0 - Manual

59

Scube([x,y,z] <1 2 345 6 7 8 >

xy zvalue
111
112
121
122
211
212
221
222 8

N UL WN -

$data : x set,

{ @i in x, @j in y, @k in z:

echo (i+","+3+","+k+":"+cube[1i, J, k]

y set, z set, cubelx,y,z]

) ;

Reads the sets x, v, z and the cube into a
CMPL model

The following user messages are displayed:
1,1,1:
1,1,2:
1,2,1:
1,2,2:
2,1,1:
2,1,2:
2,2,1:
2,2,2:8

~N o O w N

%cube([x,y,z] = 0 indices <
1111
2221

>

Defines the following data cube:

x y zvalue
111 1

112
121
122
211
212
221
222

R OO O o oo

[
b
)]
()
P
w
AN

NN R R e e
NN R R NN e e
N RN RN RN e

Scube[x] <1 2 3 45 6 78 >

A cube defined over a 3-tuple set:

xy zvalue
111
112
121
122
211
212
221
222

OO U, WN -

CMPL 2.1.0 - Manual

60

$data : x set[3], cubel[x] Reads the 3-tuple set x and the parameter array

cube
{ @i in x: echo(i +":"+cubel[i]); }

The following user messages are displayed:

(1, 1, 1]:1
(1, 1, 2]:2
(1, 2, 1]:3
(1, 2, 2]:4
(2, 1, 11:5
(2, 1, 21:6
(2, 2, 11:7
(2, 2, 2]:8
D

tx set[3] <111 112 121 122
211 212 221 222>

ata cube defined over x

Scube[x] = 0 indices < 1 1 1 1 x y zvalue
2221 > 111 1
112 0
121 0
122 0
211 0
212 0
221 0
222 1
sroutes set[2] < pl cl Defines a 2-tuple set routes and a matrix c
pl c2 that is defined over routes
pl c4
p2 c2
p2 c3
p2 c4
p3 cl
p3 c3 >
%cl[routes] <3 2 6 5 2 3 2 4>
%data : routes set[2], clroutes] Reads the 2-tuple set routes and the matrix ¢
into a CMPL model
{ @i in routes: The following user messages are displayed:
echo(i + " : "4+ c[i]) ["pl™, "cl"] : 3
} ["pl", "c2"] : 2
["pl", "c4"] : 6
["p2", "c2"] : 5
["p2", "c3"] : 2
["p2", "c4"] : 3
["p3", "cl"] : 2
["p3", "c3"] : 4

CMPL 2.1.0 - Manual 61

2.2.4 CmplXisData

2.2.4.1 CmplXisData in CMPL Header

CmplXIsData is CMPL's interface for reading sets and parameters from an Excel file and for writing optimisa-
tion results to an open Excel file. If the Excel file is not open, CMPL will open it automatically and the results
of the optimisation can be seen immediately. Please note, this feature is only available on Windows and ma-
cOS if Microsoft Excel is installed on this system. CmplXIsData is implemented with Python3 using the Python
for Excel (open-source) library by xlwings (www.xlwings.org).

The command line option x1sdata is used for this purpose. The arguments of this command line option

define parameters and sets for CMPL, whose source Excel file and the corresponding cell ranges are spe-
cified in a CmplXIsData file. It makes sense to use this command line option in the CMPL header, but of
course it can also be used on the command line itself.

Usage CMPL header for defining external data:

$xlsdata [filename]
$xlsdata [filename]
$xlsdata [filename]

[setl set[[rank]l]] [, set2 set[[rankl] , ..]
[paraml] [, param2 , ..]

[paramarrayl[set]l] [, paramarrayZ[set] , ..]

filename

[setl set[[rank]]][,set2 set[[rank]],
]

[paraml] [, param2 , ..]

[paramarrayl[set]] [,paramarray’Z[set],.

CMPL 2.1.0 - Manual

-

62

File name of the CmplXisData file

If the file name contains white spaces the name
must be enclosed in double quotes.

If filename is not specified the generic name
modelname.xdat Wwill be used, where model-
name.cmpl is the name of the cmpl file.

Specifies a set with the name set1 and the rank
rank

Specification of the rank is optional. If specified,

then it must match the rank within the CmplXIs-
Data file.

For more than one set the sets are to be separ-
ated by commas.

Specifies a scalar parameter

If more than one parameters are to be specified
then the parameters are to be separated by com-
mas.

Specifies a parameter array and the set over
which the array is defined

For more than one parameter array the entries are
to be separated by commas.

The easiest form to specify an external data is $xlsdata. In this case a generic filename model-
name.xdat Will be used and all sets and parameters that are defined in this file will be read.

If parameters and sets are specified in $data, then all definitions of the parameters and sets can be mixed
with another. But a set must be specified before it is used in a definition of a parameter array.

Any number of CMPL header lines can be specified, both for the same data file and for any number of other
data files.

2.2.4.2 CmplXisData file format

A CmplXisData file is a plain text file that contains the definition of parameters and sets with the cell ad-
dresses of their values in the specified Excel file in a specific syntax. Additionally, the optimisation results to
be written to Excel with their cell addresses can be specified in this file. The parameters and sets can be
read into a CMPL model by using the command line option x1sdata, for instance by using it in CMPL
header.

A CmplXisData file contains usually the three sections @source, @input and @Qoutput. The @meta section
is intended to specify the Excel file and optionally the sheet to be used to read sets and parameters and to
write the optimisation results. If the Excel file is not already open, it will be opened automatically when the
CmplXIsData file is accessed. In the @input section, the sets and parameters to be read into the Cmpl
model have to be specified with their cell ranges. In contrast to a CmplData file, such a specification can
only be specified in one line. The RGoutput section specifies the optimisation result elements to written to
the Excel file. This results are displayed directly in the Excel file.

Usage:

#text # comments

@source # section for specifying the Excel
file and the default sheet

%$file < excelFileName > # name of the Excel file

[$sheet < activeSheetName >] # optional - name of the active
sheet

@input # section for specifying sets and
parameters to be read into Cmpl

$name < cellReference > # scalar parameter

%name set[[rank]] < cellRangeReference > # set definition

parameter array

$name [set[,setl, ...]] < cell range reference >

CMPL 2.1.0 - Manual 63

@outp

$name

$name

$name

$name
$name
$name
$name

$name

%objN

%objs

%objs

$nrOf

$solv
$solw

$name.

$name.

ut

.activity < cell reference >
type < cell reference >
.lowerBound < cell reference >
upperBound < cell reference >

.marginal < cell reference >

section for specifying the
optimisation results to be written

to Excel

singleton variable or constraint

array of variables or constraints

[set[,setl, ...]].activity < cell range reference >
[set[,setl, ...]].type < cell range reference >
[set[,setl, ...]].lowerBound < cell range reference >
[set[,setl, ...]].upperBound < cell range reference >
[set[,setl, ...]].marginal < cell range reference >

general solution information
ame < cell reference >

ense < cell reference >

%objValue < cell reference >

tatus < cell reference >

%nrOfVars < cell reference >

Cons < cell reference >
erName < cell reference >

erMsg < cell reference >

@sourc

e

%$file < excelFileName >

[%$shee

@input

%name

CMPL 2.1

t < activeSheetName >]

< cellReference >

.0 - Manual

Section for specifying the Excel file and the default
sheet

Name of the Excel file

The name can contain spaces, but it is not allowed to
enclose the file name with double quotes.

Optional argument to specify the name of the active
sheet

In each entry for the inputs and the outputs, the sheet
can be specified directly.

Section for specifying sets and parameters to be read
into Cmpl

A scalar parameter name is assigned a single string or
number available in Excel at the specified cell.

64

%name set[[rank]] < cellRangeRefer-

ence >

%$name [set[,setl, ...]]

<cellRangeReference >

Qoutput

%$name.activity< cell reference >
%$name.type < cell reference >
%$name.lowerBound < cell reference >
%$name.upperBound < cell reference >

%$name.marginal < cell reference >

$namel[set[,setl, ...]].activity <
cell range reference >
$namel[set[,setl, ...]].type <
cell range reference >
$name[set/[,setl, ...]].lowerBound <
cell range reference >
$namel[set[,setl, ...]].upperBound <
cell range reference >
$namel[set[,setl, ...]].marginal <

cell range reference >

CMPL 2.1.0 - Manual

Definition of an n-tuple set

A set definition starts with the name followed by the
keyword set. For n-tuple sets with n>1 the rank of
the set is to be specified enclosed by square brackets.

The set is assigned the entries available in Excel in the
cells specified in the cell range reference.

Please note that whitespaces are not allowed as part of
an index.

Definition of a parameter array

The specification of a parameter array starts with the
name followed by one or more sets, over which the ar-
ray is defined. If more than one set is used then the
sets have to be separated by commas.

The set or sets have to be defined before the para-
meter definition.

The data entries can be strings or numbers and have to
be found at the specified cell range reference in Excel.

Section for specifying the optimisation results to be
written to Excel

Singleton variable or constraint

For a singleton variable or constraint named name, the
activity, type, limits and dual values can be written to
Excel in the cell specified by ce1l reference.

The name is followed by a dot and one of the keyword
(activity, type, lowerbound, upperbound, mar-
ginal) for the information to be written to Excel.

Arrays of variables or constraints

A complete array of variables or constraints named
name, the activity, type, limits and dual values can be
written to Excel in the specified cell range.

The specification of an array of variables or constraints
starts with the name followed by one or more sets,
over which the array is defined. If more than one set is
used then the sets have to be separated by commas.
This is followed by a dot and one of the keywords for
the attributes activity, type, lowerbound, up-
perbound, marginal of the result information to be
written to Excel.

A single element of the array cannot be accessed.

65

$objName < cell reference > Writes the name of the objective function to Excel in
the specified cell

%objSense < cell reference > Writes the objective sense to Excel in the specified cell

$objValue < cell reference > Writes the objective function value to Excel in the spe-
cified cell

$objStatus < cell reference > Writes the status of the objective function to Excel in
the specified cell

$nrOfVars < cell reference > Writes the number of the variables to Excel in the spe-
cified cell

$nrOfCons < cell reference > Writes the number of the constraints to Excel in the
specified cell

$solverName < cell reference > Writes the name of the solver invoked to Excel in the
specified cell

$solverMsg < cell reference > Writes a message of the solver invoked to Excel in the
specified cell

The following example illustrates the functionality of CmplXisData for the simple production mix problem be-
low:

1-x,+2-x,+3 X3 » max!
S.t.

5.6 -x,+7.7 -x,+10.5 - x;<15
9.8 -x,+4.2 -x,+11.1 -x,<20
x;20; j=1(13

This model seeks the quantities of three products depending on the capacities of two machines in order to
maximise the total profit contribution margin. The coefficients in the objective function are the unit contribu-
tion margins. There are two machines whose capacities of 15 hours for the first machine and 20 hours for
the second machine cannot be exceeded. The utilisation of the machines as a function of the production
quantities is given in the left-hand sides of the two constraints. The coefficients are the utilisation of a ma-
chine per unit of product.

The sets and parameters are organised in an Excel file named ExampleData.x1sx in the ProdProg sheet
as shown in the following screenshot. Afterwards, the results of the optimisation are also written to this
sheet. In contrast to CMPLData, the notation of the operating system language can be used for real numbers
that are to be read into the Cmpl model. For example, the Excel example uses a German notation for the
data of the A matrix in the cell range D16:F17.

CMPL 2.1.0 - Manual 66

12

13 P1 P2 P3 Capacity [h] Usage [h] Marginal [€] | Name Type Lower bound Upper bound
14 Profit contribution [€/unit] 1 2 3
15]

16 Usage of machine [h/unit] M1 5,6 7,7 10,5 15
17, M2 9,8 4,2 11,1 20
18 Quantities [units]

19 Marginal [€]

20 Name of the variable

21 Type of the Variable

22 Lower bound

23 Upper bound

24

25

26 Objective function value

27 Objective function sense

28 Number of variables

29 Number of constraints

30 Solver name

31 Solver

32

23 Variable z

34 Objective value [€]

35 Marginal [€]

36 Name of the variable

3% Type of the variable

38 Lower bound

39 Upper bound

40

41

42 Constraint profit

43 Activity [€] 0

44 Marginal [€] -1

45 Name of the constraint profit

46 Type of the constraint E

47 Lower bound 0

48 Upper bound 0

The corresponding Cmpl file prodProg.cmpl starts in the first line with the header entry for processing
the CmplXIsData file prodProg.xdat. This line specifies the sets and the parameter arrays to be read into

the Cmpl model, which are then used in the following sections of the model.
%xlsdata prodProg.xdat : P set, M set, c[P], b[M], A[M,P]

var:
x[P]: real;
z: real;
obj:

Z —> max;

con:
profit: c¢"T * x = z;
machine: A * x <= b;

In addition to the array of variables x for the production quantities, a real variable z is defined to store the
objective function value. Therefore, the value of the variable z is to be maximised. The original objective
function is defined as a constraint profit and its value must be equal to the variable z. The constraints for
the two machines are defined in the last line.

The CmplXisData file prodProg.xdat starts with a source section with the entries for the Excel file Ex-
ampleData.xlsx and the sheet ProdProg.

CMPL 2.1.0 - Manual 67

@source
$file < ExampleData.xlsx >
%$sheet < ProdProg >

The following input section usually starts with the definition of index sets that will later be used for para-
meter arrays. The line 5P set < D13:F13 > defines a set p and assigns the data given in the Excel
sheet in the cell range D13 :F13. This set is the set of the products and is assigned the values "p1", "p2"
and "p3". The following line defines the set of the machines named M, which is assigned the values "M1"
and "mM2" (from of the cell range c16:C17) .

@input
%P set < D13:F13 >
%M set < Cl6:C17 >

o

c[P] < D14:F14 >
A[M,P] < D16:F17 >
b[M] < G16:G17 >

o

oe

The set P is used for the definition of the vector of the objective function coefficients c. This vector is as-
signed the values in the cell range D14:F14. For the usage of the capacities of the machines per unit of
the products, a matrix 2 is defined in the next row. For this purpose, the set M is used for the rows and the
set p for the columns. The data given in the cell range D16:F17 are assigned to the matrix. The last
parameter array to be defined is the vector b of the capacities of the machines using the set M. The both
capacities are given in G16:G17.

The output section is intended to write all requested results of the optimisation into the specified Excel
sheet. This can be general information about the solution, the model and the solver invoked as shown in the
following listing:

@output

$objValue < D26 >
%objSense < D27 >
$nrOfVars < D28 >
$nrOfCons < D29 >
$solver < D30 >
$solverMsg < D31 >

The objective function value of 4.28571 is to be written in the cell D26. Please note, the format of the res-
ults written into the Excel sheet follows notation of the operating system language (here German). The in-
formation about the objective sense, the number of the variables and constraints are written into the cells
D27, D28 and D29. The name of the solver and a general message of this solver shall be shown after the
optimisation in the cells D30 and D31.

CMPL 2.1.0 - Manual 68

25
26
27
28
29
30
31!

All result information of an array of variables can be written using the attributes activity, type, lower-
bound, upperbound, marginal into the specified cell ranges. All numeric values are written as real num-
bers. If a value is equal to infinity (or negative infinity) the string "inf" ("-inf") is written. The margin-
als of the variables can be either reduced costs (activity equal to zero, negative marginal value) or shadow
prices if the activity of the variable is equal to its upper bound. The type of a variable can be "c" for a real

B C D
Objective function value 4,28571
Objective function sense max
Number of variables 4
Number of constraints 3
Solver name HIGHS
Solver message

variable, "1 for integer and "B" vor binary.

$x[P] .activity < D18:F18 >
%$x[P] .marginal < D19:F19 >
%$x[P] .name < D20:F20 >
$x[P].type < D21:F21 >
%x[P] .lowerBound < D22:F22 >
%x[P] .upperBound < D23:F23 >

B € D E F
11
12
13 Pl P2 P3
14 Profit contribution [€/unit] 1 2 3
15
16 Usage of machine [h/unit] M1 5,6 7,7 10,5
17 M2 9,8 4,2 11,1
18 Quantities [units] 0 0 1,42857
19 Marginal [€] -0,6 -0,2 0
20 Name of the variable x[P1] x[P2] x[P3]
21 Type of the Variable C C C
22 Lower bound 0 0 0
23 Upper bound inf inf inf

If a variable is a singleton variable the same attributes can used to write the result information. The follow -
ing listing shows the access to the results information of the variable z as substitute of the objective func-

tion.

o o o0 o oP

N N N N N N

o

.activity <
.marginal <
.name < D36
.type < D37
.lowerBound
.upperBound

D34 >
D35 >
>

>
< D38 >
< D39 >

CMPL 2.1.0 - Manual

69

B & D

33 |Variablez

34 | |Objective value [€] 4,28571

35 |Marginal [€] 0

36 |Name of the variable z

37 |Type of the variable C

38 |Lower bound 0
inf

39 |Upper bound

The result information of a singleton constraint or an array of constraints can be accessed in the same way
as the variables with the attributes activity, type, lowerbound, upperbound, marginal as shown

below. All numeric values are written as real numbers. If a value is equal to infinity (or negative infinity) the
string "inf" ("-inf") is written. The marginals of the constraints are shadow prices if a constraint is a

bottleneck. The type of a constraint can be "L" if the left-hand side of the constraint is less than or

equal to the right-hand side, "G" for greater than or equal and "E" for Equality

$machine
$machine
$machine
$machine
%$machine
$machine

.activity <
.marginal <
.name < K16:
.type < Ll6:
.lowerBound
.upperBound

sprofit.activity < D43
sprofit.marginal < D44

$profit.name

< D45 >

Sprofit.type < D46 >
$profit.lowerBound < D47 >
$profit.upperBound < D48 >

Il6:117 >
J1l6:J17 >
K17 >

L17 >

< M16:M17 >
< N16:N17 >

>
>

G H J K M
12
13 Capacity [h] Usage [h] Marginal [€]‘ Name Type Lower bound Upper bound
14
15
16 15 15 0,285714 machine[M1] L -inf 15
17 20 15,8571 0 machine[M2] L -inf 20

CMPL 2.1.0 - Manual

70

41
42
43
44
45
46
47
48

Constraint profit

Activity [€] 0
Marginal [€] -1
Name of the constraint profit
Type of the constraint E
Lower bound 0
Upper bound 0

2.3 Incompatibilities with Cmpl 1.12

Since CMPL has been fundamentally redeveloped, there is no complete backwards compatibility. Known in-
compatibilities with the previous version are:

echo and error
These are now functions whose argument must be enclosed in parentheses. In the previous version,
no brackets were required here.

Use of := within a code block header

A code block header { i := s: ... } with a set s now leads to an assignment of the set to
the code block symbol i. In the previous version, it led to iteration over the set instead. Now an it-
eration can only be expressed by { i in s: ... }.

Write protection for code block symbols

In contrast to the previous version, code block symbols can no longer be assigned in the code block
body, but only receive their value initially in the code block header. A symbol used as a separate
counter, as is typical for loops formulated with repeat, can therefore no longer be a code block sym-
bol.

Referencing a code block in break, continue Or repeat

Only the first code block symbol defined in a code block can be used as a reference to it. In the pre-
vious version, referencing was also possible via other code block symbols defined in it and via a
name preceding the code block.

Code block with more than one header

Even if a code block has more than one comma-separated headers, alternatives in the code block as
well as break, continue and repeat refer to the entire code block itself. In the previous version,
it referred instead only to the last of the specified headers

Execution order in iterations without the keyword ordered

The execution of an iteration in a code block is done in the default order of the set being iterated
over when only one thread is used. If more than one thread is used, there is no fixed execution or-
der at all, but it is executed in parallel as far as the maximum number of threads allows. In the pre-
vious version, iteration was done in user order of the set instead. For this behaviour, the use of the
keyword ordered is now necessary.

CMPL 2.1.0 - Manual 71

+ Use of default for alternatives in a code block header

A keyword default, as used in the previous version for an unconditional alternative in a code
block, no longer exists. For such an unconditional alternative, simply use an empty header instead.
Nevertheless, the old use of default continues to work. This is because it now corresponds to the
definition of a new referencing code block symbol with the name default.

« Assignment with =

The assignment with =, which was still possible in the previous version, has been dropped (it was
already obsolete in the previous version). The operator = now only serves as a comparison operator.
For an assignment, := must be used instead.

+ Operators << and element

The operators << and element implemented in the previous version have been dropped. Instead,
the operator in must be used.

+ Operators div and mod

The operators div and mod implemented in the previous version have been dropped. Instead, the
functions div and mod must be used.

+ Semantic of []

In the previous version, [] stood for the infinite set of all 1-tuples. The infinite set of all 2-tuples
was then expressed as [,], etc. Now [] stands for the infinite set of all tuples with any rank. A
tuple construction of the kind [,] is arbitrarily possible, and also gives the infinite set of all tuples
with any rank. The infinite set of all 1-tuples can be represented with [*].

« String literals

A literal string must be enclosed in double quotes. In the previous version, it was alternatively pos-
sible to use single quotes.

- Assignment with tuple disaggregation

In the previous version, it was possible to use an assignment of the type [a,b] := t; when tisa
2-tuple. Such an assignment is no longer possible because a tuple construction expression is not al-
lowed on the left-hand side of an assignment. As a substitute, tuple matching can be used in a code
block header, for example { [@a, @b] = t: ... }.

+ Associativity for set expressions of the form 1 (1)n

In the previous version, the associativity of such an expression was lower than that of numerical op-
erations, so that, for example, 1 (1) n+1 was semantically equivalent to 1 (1) (n+1). Now the asso-
ciativity of such an expression is higher than that of numerical operations, and 1 (1)n+1 is con-
sidered as (1 (1)n)+1, which leads to an error message due to incompatible operands in the exe-
cution of the addition. For the former semantics, the example must now be written 1 (1) (n+1).

« Line names with $ substitutions

The possibility in the previous version to use $. . . $ substitutions in row names has been completely
dropped. The names of matrix lines are now assigned via regular assignments to CMPL symbols with
the assignment operator :. Index specifications can be used as usual in CMPL.

CMPL 2.1.0 - Manual 72

« Changed semantics for function defset

This function returns the tupleset of all indices of an array. In contrast, the previous version re-
turned a set of 1-tuples only from the first part of the indices. So the semantics is only unchanged in
the case when the argument array contains only 1-tuples as indices.

« Non implemented functions

The functions readstdin and readcsv, which existed in the previous version, are currently not
implemented. It has not been decided whether and with which semantics they will be implemented
again.

+ Not implemented operations for sets
The operations * and - are currently not implemented for sets. Implementation is planned.

- Keywords .integer. and .string. are dropped

In the previous version, these keywords referred to infinite sets consisting of all integer values and
all strings. They are dropped without replacement.

« Function type is dropped

In the previous version, the data type of an argument could be analysed with this function. Now
type designates the data type of a data type instead. For getting the data type of an expression or
a decision variable x now x. Stype can be used.

+ Type definition for parameters

In the previous version, the data type for a parameter symbol could be specified by writing it with a
colon after the symbol in the definition. This syntax has been dropped. Data type constraints for
parameter symbols must now be specified via attributes instead.

+ Syntax for $include

In the previous version, include was not part of CMPL header, but a special command in its own
right. It was therefore written without %. Since the include functionality is now provided by CMPL
header, it must be written $include.

+ Syntax for 3data

If multiple symbols are specified, they must be separated by commas. If no filename is specified,
there must be at least one whitespace directly after the colon after $data. In the previous version,
there were other syntactical variants that are no longer supported.

« Syntax for CmplServer

In the previous version, the url of a CmplServer was defined by the command line option -cm-
plUrl. Now the option -url is used.

CMPL 2.1.0 - Manual 73

2.4 Examples

2.4.1 Selected decision problems

2.4.1.1 The diet problem

The goal of the diet problem is to find the cheapest combination of foods that will satisfy all the daily nutri-
tional requirements of a person for a week.

The following data is given (example cf. Fourer/Gay/Kernigham 2003, p. 27ff.) :

food cost per provision of daily vitamin requirements in percentages
package
A Bl B2 C

BEEF 3.19 60 20 10 15
CHK 2.59 8 2 20 520
FISH 2.29 8 10 15 10
HAM 2.89 40 40 35 10
MCH 1.89 15 35 15 15
MTL 1.99 70 30 15 15
SPG 1.99 25 50 25 15
TUR 2.49 60 20 15 10

The decision is to be made for one week. Therefore the combination of foods has to provide at least 700%
of daily vitamin requirements. To promote variety, the weekly food plan must contain between 2 and 10
packages of each food.

The mathematical model can be formulated as follows:

319 X5 +2.59 Xy +2.29 X gy +2.89 x40, +1.89 X 1oy + 1.99-x 7 #1.99 X g +2.49 - X 1y g > min !
s.t.

60X grprt 8 X e 8 X sy ¥40-x 10+ 15X 1y + 70)7y 25 X gp s 60 X 1, <700

20X grprt 0 X 100X g 40X 10+ 35X 10+ 30X 17, 50 X o +20- X 7, < 700

10X g+t 20X e 15 X iy 35 X s F 15X 1ycy ¥ 15X 7 25 X oo+ 15 X 7 <700

15X gppt20- X 10X oy #10-X 400+ 15X 110y 15X 1 15 X oo+ 10 X 1, <700

x/€[2,3,..., 10} ;j€|BEEF ,CHK , DISH , HAM , MCH , MTL , SPG , TUR)

The CMPL model diet.cmpl can be formulated as follows:

par:
NUTR :
FOOD :

Set("A","Bl", "B2", ch) :
set ("BEEF", "CHK", "FISH", "HAM", "MCH", "MTL", "SPG", "TUR") :

#cost per package
costs[FOOD] := (3.19, 2.59, 2.29, 2.89, 1.89, 1.99, 1.99, 2.49);

CMPL 2.1.0 - Manual 74

#provision of the daily requirements for vitamins in percentages
vitamin [NUTR, FOOD] := ((60, 8, 8, 40, 15, 70, 25, 60) ,

(20, 0, 10, 40, 35, 30, 50, 20) ,

(10, 20, 15, 35, 15, 15, 25, 15),

(15, 20, 10, 10, 15, 15, 15, 10)

) i

#weekly vitamin requirements

vitMin [NUTR]:= (700,700,700,700);
var:

x[FOOD] : integer([2..10];
obj:

cost: costs”T * x -> min;
con:

minimum vitamin restriction
vit: vitamin * x >= vitMin;

An alternative formulation is based on the cmplData file diet-data.cdat that is formulated as follows:

SNUTR set < A Bl B2 C >
$FOOD set < BEEF CHK FISH HAM MCH MTL SPG TUR >

#cost per package
%costs[FOOD] < 3.19 2.59 2.29 2.89 1.89 1.99 1.99 2.49 >

#provision of the daily requirements for vitamins in percentages
$vitamin [NUTR, FOOD] < c0 8 8 40 15 70 25 60

20 0 10 40 35 30 50 20

10 20 15 35 15 15 25 15

15 20 10 10 15 15 15 10 >

#weekly vitamin requirements
%vitMin [NUTR] < 700 700 700 700 >

Assuming that the corresponding CMPL file diet-data.cmpl is in the same working directory the model
can be formulated as follows:

%data diet-data.cdat: FOOD set, NUTR set, costs[FOOD], vitamin[NUTR,FOOD], wvit-
Min [NUTR]

var:

x[FOOD] : integer([2..10];
obj:

cost: costs”™"T * x -> min;
con:

minimum vitamin restriction
vit: vitamin * x >= vitMin;

Solving this CMPL model through using the command:

cmpl diet-data.cmpl

leads to the same solution as for the first formulation:

CMPL 2.1.0 - Manual 75

Problem diet-data.cmpl

Nr. of variables 8
Nr. of constraints 4
Objective name cost
Solver name HIGHS
Display variables (all)

Display constraints (all)

Objective status INTEGER OPTIMAL

Objective value 101.14 (min!)

Variables

Name Type Activity Lower bound Upper bound Marginal
x [BEEF] I 2 2 10 -
x [CHK] I 8 2 10 -
x [FISH] I 2 2 10 -
x [HAM] I 2 2 10 -
x [MCH] I 10 2 10 -
x [MTL] I 10 2 10 -
x [SPG] I 10 2 10 -
x [TUR] I 2 2 10 -
Constraints

Name Type Activity Lower bound Upper bound Marginal
vit[A] G 1500 700 inf -
vit[B1] G 1330 700 inf -
vit[B2] G 860 700 inf -
vit[C] G 700 700 inf -

2.4.1.2 Production mix
This model calculates the production mix that maximizes profit subject to available resources. It will identify
the mix (number) of each product to produce and any remaining resource.

The example involves three products which are to be produced with two machines. The following data is
given:

P1 P2 P3| upper bounds [h]

upper bound of a product [units] 250 240 250

selling price per unit [€/unit] 500 600 450

direct costs per unit [€/unit] 425 520 400

profit contribution per unit [€/unit] 75 80 50

machine hours required per unit

machine 1 [h/unit] 8 15 12 1,000
machine 2 [h/unit] 15 10 8 1,000

The mathematical model can be formulated as follows:

CMPL 2.1.0 - Manual 76

75-x,+80-x,+50-x;—>max !
S.L.
8-x,+15x,+12-x,<1,000
15-x,+10-x,+8-x,<1,000

x,€[0,1,...,250)
x,€[0,1,...,240)]
x,€[0,1,...,250)

The CMPL model production-mix.cmpl is formulated as follows:

par:
#vectors for the prices and costs per unit of the three products
price := (500, 600, 450);
costs := (425, 520, 400);

#upper bound of the products
xMax := (250, 240, 250);

#calculation the vector of the profit contribution per unit
c := price - costs;

#machine hours required per unit

a := ((8, 15, 12), (15, 10, 8)):
#upper bounds of the machines
b := (1000, 1000);
var:
x [defset(price)]: integer;
obj:

profit: c*T * x ->max;

con:
res: a * x <= Db;
x <=xMax;

The model can be formulated alternatively by using the cmplData production-mix-data.cdat file.

%products set < 1..3 >

$machines set < 1..2 >

%price[products] <500 600 450 >
%costs[products] <425 520 400 >

#machine hours required per unit
%a[machines,products] < 8 15 12 15 10 8 >

#fupper bounds of the machines
%$b[machines] < 1000 1000 >

CMPL 2.1.0 - Manual 77

#lower and upper bound of the products
%$xMax [products] < 250 240 250>
%$xMin[products] < 45 45 45 >

#fixed setup costs
SFC[products] < 500 400 500>

The parameter arrays xMin and FC are not necessary for the given problem and therefore not specified
within the sdata options in the following CMPL file production-mix-data.cdat:

$data : products set, machines set, price[products], costs[products], al[ma-
chines,products], b[machines], xMax[products]

par:
c := price-costs;

var:
x [defset(price)]: integer;

obj:
profit: c¢c”T * x ->max;

con:
res: a * x <= Db;
x <=xMax;

The CMPL command

cmpl production-mix-data.cmpl

leads to the following Solution:

Problem production-mix-data.cmpl
Nr. of variables 3

Nr. of constraints 2

Objective name profit

Solver name HIGHS

Display variables (all)

Display constraints (all)

Objective status INTEGER OPTIMAL

Objective value 6395 (max!)

Variables

Name Type Activity Lower bound Upper bound Marginal
[1] I 33 0 250 -
[2] I 49 0 240 -
[3] I 0 0 250 -

Constraints

Name Type Activity Lower bound Upper bound Marginal

res[1] L 999 -inf 1000 -

res[2] 985 -inf 1000 -

CMPL 2.1.0 - Manual 78

2.4.1.3 Production mix including thresholds and step-fixed costs

This model seeks the production mix that maximises profit subject to available resources. When a product is
produced, there are fixed set-up costs. There is also a threshold for each product. The quantity of a product
is zero or greater than the threshold. This is the behaviour of a semi-continuous(integer) variable.

The example involves three products which are to be produced with two machines. The following data is
given:

P1 P2 P3 HPPEr
bounds [h]
production minimum of a product [units] 45 45 45
upper bound of a product [units] 250 240 250
selling price per unit [€/unit] 500 600 450
direct costs per unit [€/unit] 425 520 400
profit contribution per unit [€/unit] 75 80 50
set-up costs [€] 500 400 500
machine hours required per unit
machine 1 [h/unit] 8 15 12 1,000
machine 2 [h/unit] 15 10 8 1,000

The mathematical model can be formulated as follows:

75-x,+80-x,+50-x;—500-y,—400- y,—500- y;— max !
S.1.

8-x,+15x,+12-x,<1,000

15-x,+10-x,+8-x,<1,000

45-y,<x,<250-y,
45-y,<x,<240-y,
45-y,<x,<250-y,

x,€[0,1,...,250
x,€(0,1,...,240)
x,€[0,1,...,250)

ij{OJ} Lj:1(1)3

Using the CmplData file production-mix-data.cdat the CMPL model production-mix-fc.cmpl is
formulated as follows:

$data production-mix-data.cdat

par:
c := price-costs;

var:
{j in products : x[j]: integer[0..xMax[j]]l; }
y[products] : binary;

CMPL 2.1.0 - Manual 79

obj:
profit: c¢c*T * x - FC"T * y ->max;

con:
res: a * x <= b;
bounds {j in products: xMin[]j] * y[]J] <= x[j] <= xMax[]j] * y[jl; }

CMPL command:

cmpl production-mix-fc.cmpl

Solution:

Problem production-mix-fc.cmpl

Nr. of variables 6

Nr. of constraints 8

Objective name profit

Solver name HIGHS

Display variables (all)

Display constraints (all)

Objective status INTEGER OPTIMAL

Objective value 4880 (max!)

Variables

Name Type Activity Lower bound Upper bound Marginal
x[1] I 0 0 250 -
x[2] I 66 0 240 -
x[3] I 0 0 250 -
vI[1] B 0 0 1 -
yI[2] B 1 0 1 -
yv[3] B 0 0 1 -
Constraints

Name Type Activity Lower bound Upper bound Marginal
res[1] L 990 -inf 1000 -
res[2] L 660 -inf 1000 -
bounds[1,1] L 0 -inf 0 -
bounds[1, 2] G 0 0 inf -
bounds[2,1] L -21 -inf 0 -
bounds[2, 2] G 174 0 inf -
bounds[3,1] L 0 -inf 0 -
bounds[3,2] G 0 0 inf -

2.4.1.4 Production mix with user-defined functions for thresholds and step-
fixed costs

Since the formulations for step-fixed costs and semi-continuous variables can be used in several models, it
makes sense to specify the formulations in user-defined functions which can be included in a Cmpl model.

CMPL 2.1.0 - Manual 80

The following listings shows the formulation of step-fixed costs:

fixcosts := &{ @v = Sargl[l], @f = Sarg[2],@m = $arg[3]:
// variable, fixed costs, big M
{ £f ==0: return 0; }

local var b :=
con v <=m * Db;
return f*b;

binary;

}i

With the expression fixcosts := &{ .. }, the code block &{ .. } is assigned to the symbol fix-
costs. The user-defined function can be called under this name. Three code block symbols are assigned
the arguments of the function. The symbol v is assigned the variable for which step-fixed costs are incurred
if it is greater than zero. The second argument is the stored step-fixed cost that will be stored in f. The last
symbol m stands for a big-M value. If the step-fixed cost equal to zero then the function return the value
zero ({ £ == 0: return 0; }). A local binary variable b is then defined. This variable is used for the
following constraint v <= m * b;. In the last step, the function returns f£*b. Since this function is to be
be called within an objective function, the result of this function extends the corresponding objective func-
tion. Although the variable and the constraint have a local scope, they are contained in the entire matrix of
the LP.

A function for semi-continuous(integer) variables can be formulated as follows:

semicont := &{ Qtp = S$arg[l], @lb = $arg[2], @ub = S$arg[3]:
// data type, threshold value, upper bound

local var v := tp[0..ub];
con res := v =0 || v >= 1b;
return v;

}i

The symbol semicont is assigned the user-defined function which can be called under this name. The ar-
guments are the type of the variable, the threshold for the variable and the upper bound. The local symbol
tp is used for the type, 1b for the threshold and ub for the upper limit. A local variable v is defined with the
type tp, a lower bound of zero and the upper bound ub (1ocal var v := tp[0..ub];). In the last
step, the function returns this variable (return v;). The behaviour that the variable v is either equal to
zero or lies in the interval between the threshold value 1b and the upper bound ub is formulated as an al-
ternative constraint v = 0 || v >= 1b.

Both functions mare saved in a file production-mix-1ib.cmpl which is included in the Cmpl model
production-mix-fc-func.cmpl. In the first line, the CmplData file from the previous example was read
into the model. In the second line, the production-mix-1ib.cmpl file is included, which contains the
two functions.

CMPL 2.1.0 - Manual 81

$data production-mix-data.cdat
$include production-mix-lib.cmpl
par:

c := price-costs;

bigM := max (xMax) ;

var:
{j in products
x[j] : semicont(integer, xMin[j], xMax[j])
}
obj:
profit: sum{ j in products : c[]] * x[j] - fixcosts(x[]j], FC[j], bigM) 3=
>max;
con:
res: a * x <= b;

The parameter section contains the calculation of the cost vector as result of a vector subtraction (¢ :=
price-costs;) and the parameter bigM which is equal to the maximum of all values in the vector xMax.
All elements of the vector of variables x are defined as semi-integer variables using the function semi-
cont (). The objective function is also defined using a sum-loop over all products, whereby the step-fixed
costs are included by calling the user-defined function fixcosts().

Running the problem using CMPL command:

cmpl production-mix-fc-func.cmpl

leads to the solution which is equal to the solution of the previous example:

Problem production-mix-fc-func.cmpl

Nr. of variables 12

Nr. of constraints 17

Objective name profit

Solver name HIGHS

Display variables (all)

Display constraints (all)

Objective status INTEGER OPTIMAL

Objective value 4880 (max!)

Variables

Name Type Activity Lower bound Upper bound Marginal
x[1] I 0 0 250 -
x[2] I 66 0 240 -
x[3] I 0 0 250 -
cl B 0 0 1 -
c2 B 1 0 1 -
c3 B 0 0 1 -
Constraints

Name Type Activity Lower bound Upper bound Marginal
line 4 G 184 0 inf -
line 5 G 0 0 inf -
line 6 G 4880 0 inf -
res[1] L 990 -inf 1000 -
res[2] L 660 -inf 1000 -
line 10 G 0 0 inf -

CMPL 2.1.0 - Manual 82

line_ 11 L 0 -inf 0 -
line_12 G le+10 45 inf -
line_14 G le+10 0 inf -
line 15 L -le+10 -inf 0 -
line 16 G 66 45 inf -
line 18 G 0 0 inf -
line 19 L 0 -inf 0 -
line 20 G le+10 45 inf -

Unfortunately, the name of the variables and constraints constructed with the two user-defined functions are
generated by using default names (e.g. c1 and line 4). Therefore, it makes sense to generated more
meaningful names within the functions. Otherwise, a user may not be interested in seeing the generated
auxiliary variables and constraints. Hiding these elements can be done by defining names that start with two
underscores and are not shown in the solution by default.

The function for the step-fixed costs can be extended as follows:

fixcosts := &{ @v = S$Sargl[l], @f = $Sarg[2],@m = Sarg[3]
// variable, fixed costs, big M
{ £ == 0: return 0; }
local var b := binary;
b.$destNameTuple ::= [" b", v.S$destTuple];
local con res := v <=m * b;
res.$destNameTuple ::= [" b ub", v.$destTuple];

return f*b;

b

The definition of the variable b is followed by the definition of its name and the index in the matrix of the
entire LP. The attribute $destNameTuple of this variable is assigned the name " b" and as index the
index of the variable v using its attribute sdestTuple. A similar approach is used for the name and the in-
dex of the constraint res.

The extended function for the semi-continuous(integer) needs a fourth argument for the index of the vari-
able to be generated:

semicont := &{ @tp = Sarg[l], @lb = S$arg[2], Qub = Sarg[3], @idx = Sarg[4]:
// data type, threshold value, upper bound

local var v := tp[0..ub];

local var y := binary;
y.$destNameTuple ::= [" y", idx];
local con resl:=y * 1lb <= v ;
local con res2:= v <=y * ub;

resl.$destNameTuple [" vy 1b", idx];
res2.$destNameTuple ::= [" vy ub", idx];

return v;

CMPL 2.1.0 - Manual 83

This argument is used for the definition of the name and index of the auxiliary variable y in the matrix of the
LP (y.$destNameTuple ::= [" y", idx];). The the auxiliary constraints follow an alternative way,
where for both constraints the names and indices are defined in the same way as the constraints of the set-
fixed costs. Since the names of all auxiliary variables and constraints start with two underscores they are not
shown in the solution.

Problem production-mix-fc-funcl.cmpl

Nr. of variables 9

Nr. of constraints 11

Objective name profit

Solver name HIGHS

Display variables (all)

Display constraints (all)

Objective status INTEGER OPTIMAL

Objective value 4880 (max!)

Variables

Name Type Activity Lower bound Upper bound Marginal
[1] I 0 0 250 -
[2] I 66 0 240 -
[3] I 0 0 250 -

Constraints

Name Type Activity Lower bound Upper bound Marginal

res[1] L 990 -inf 1000 -

res[2] L 660 -inf 1000 -

If these variables and constraints shall be displayed, the header entry $display generatedElements is

to be used.

Problem production-mix-fc-funcl.cmpl
Nr. of variables 9

Nr. of constraints 11

Objective name profit

Solver name HIGHS

Display variables (all,generatedElements)

Display constraints (all,generatedElements)

Objective status INTEGER OPTIMAL

Objective value 4880 (max!)

Variables

Name Type Activity Lower bound Upper bound Marginal

x[1] I 0 0 250 -

_ yI[1] B 0 0 1 -

x[2] I 66 0 240 -

_yl2] B 1 0 1 _

x[3] I 0 0 250 -

_v[3] B 0 0 1 -

_ bl1] B 0 0 1 -

__b[2] B 1 0 1 -
b[3] B 0 0 1 -

CMPL 2.1.0 - Manual 84

Constraints

Name Type Activity Lower bound Upper bound Marginal
vy 1bI[1] L 0 -inf 0 -
_ y ub[1l] G -21 0 inf -
vy 1b[2] L 174 -inf 0 -
_ y ubl[2] G 0 0 inf -
_ vy 1bI[3] L 0 -inf 0 -
_ y ub[3] G 0 0 inf -
b ub[1] G 184 0 inf -
__ b ub[2] G 0 0 inf -
_ b ub[3] G 4880 0 inf -
res[1] L 990 -inf 1000 -
res[2] L 660 -inf 1000 -

2.4.1.5 The knapsack problem

Given a set of items with specified weights and values, the problem is to find a combination of items that fills
a knapsack (container, room, ...) to maximize the value of the knapsack subject to its restricted capacity or
to minimize the weight of items in the knapsack subject to a predefined minimum value.

In this example there are 10 boxes, which can be sold on the market at a defined price.

box number price weight
[€/box] [pounds]

1 100 10
2 80
3 50 8
4 150 11
5 55 12
6 20
7 40
8 50
9 200 10

10 100 11

1. What is the optimal combination of boxes if you are seeking to maximize the total sales and are able to
carry a maximum of 60 pounds?

2. What is the optimal combination of boxes if you are seeking to minimize the weight of the transported
boxes bearing in mind that the minimum total sales must be at least €600?

CMPL 2.1.0 - Manual 85

Model 1: maximize the total sales

The mathematical model can be formulated as follows:

100-x,+80-x,+50-x;+150-x ,+55-x5+20- x,+40- x,+50-x4+200-x,+100- x,,— max !
S.1.

10-x,+5-x,+8x;+11-x,+12-x,+4-x,+6-x,+9-x;+10-xy+11-x,,<60

xiE{O,l} ;j=1(1)10

The basic data is saved in the CMPL file knapsack-data.cdat:

$boxes set < 1..10 >

#weight of the boxes
%w[boxes] < 10 5 8 11 12 4 6 9 10 11 >

#price per box
%pl[boxes] <100 80 50 150 55 20 40 50 200 100 >

#max capacity
tmaxWeight <60>

#min sales
$minSales <600>

A simple CMPL model knapsack-max.cmpl can be formulated as follows:

$data knapsack-data.cdat
#show only activities unequal to zero in the solution
$display nonZeros

var:

x[boxes] : binary;
obj:

sales: p"T * x ->max;
con:

weight: w*"T * x <= maxWeight;

CMPL command:

cmpl knapsack-max.cmpl

Solution:

Problem knapsack-max.cmpl

Nr. of variables 10

Nr. of constraints 1

Objective name sales

Solver name HIGHS

Display variables nonzero variables (all)

Display constraints nonzero constraints (all)

Objective status INTEGER OPTIMAL
Objective value 700 (max!

CMPL 2.1.0 - Manual 86

Variables

Name Type Activity Lower bound Upper bound Marginal
x[1] B 1 0 1 _
x[2] B 1 0 1 _
x[3] B 1 0 1 -
x[4] B 1 0 1 -
x[6] B 1 0 1 -
x[9] B 1 0 1 -
x[10] B 1 0 1 -
Constraints

Name Type Activity Lower bound Upper bound Marginal
weight L 59 -inf 60 -

Model 2: minimize the weight

The mathematical model can be formulated as follows:

10-x,+5-x,+8 x3+11-x,+12-x5+4-x,+6:x,+9- x5 +10-xo+11-x,,—> min !

s.L.

100-x,+80-x,+50-x;+150-x,+ 55-x5+20-x,+40-x,+50-x;+200-x,+100- x,,>600
x,€{0,1} ;j=1(1)10

A simple CMPL model knapsack-min-basic.cmpl can be formulated as follows:

$data knapsack-data.cdat
#show only activities unequal to zero in the solution

%display nonZeros

var:
x[boxes] : binary;
obj:
weight: w"T * x ->min;
con:

sales: p"T * x >= minSales;

CMPL command:

cmpl knapsack-min.cmpl

Solution:

Problem knapsack-min.cmpl

Nr. of variables 10

Nr. of constraints 1

Objective name weight

Solver name HIGHS

Display variables nonzero variables (all)

Display constraints nonzero constraints (all)

Objective status INTEGER OPTIMAL

Objective value 47 (min!)

CMPL 2.1.0 - Manual 87

Variables

Name Type Activity Lower bound Upper bound Marginal
x[1] B 1 0 1 _
x[2] B 1 0 1 _
x[4] B 1 0 1 -
x[9] B 1 0 1 -
x[10] B 1 0 1 -
Constraints

Name Type Activity Lower bound Upper bound Marginal
sales G 630 600 inf -

2.4.1.6 The standard transport problem

A transport problem is a special kind of linear programming problem which seeks to minimize the total ship-
ping costs of transporting goods from several supply locations (origins or sources) to several demand loca-
tions (destinations).

The following example is taken from (Anderson et.al. 2011, p. 261ff). This problem involves the transporta-
tion of a product from three plants to four distribution centres. Foster Generators operates plants in Cleve-
land, Ohio; Bedford, Indiana; and York, Pennsylvania. The supplies are defined by the production capacities
over the next three-month planning period for one particular type of generator.

The company distributes its generators through four regional distribution centres located in Boston, Chicago,
St. Louis, and Lexington. It is to decide how much of its products should be shipped from each plant to each
distribution centre. The objective is to minimize the transportation costs.

Plants Centers

6000

5000

4000

2000

1500

Lexington

CMPL 2.1.0 - Manual 88

The problem can be formulated in the form of the general linear programme below

x>0 ;i=1(1)m, j=1(1)n

x,; — number of units shipped from plant i to center j
¢; — cost per unit of shipping from plant i to center j
. — supply in units at plant i

d ; — demand in units at desitination j

Ky

The CMPL model transportation.cmpl can be formulated or by using an additional cmplData file

transportation.cdat as follows:

%plants set < 1..3 >
%centres set < 1..4 >

%

s[plants] < 5000 6000 2500 >
$d[centres] < 6000 4000 2000 1500 >

%cl[plants, centres] < 3 2 7 6
752 3
2545 >

$data transportation.cdat

%display nonZeros

var:
x[plants,centers]: integer;
obj:
costs: sum{i in plants, j in centers : c[i,3j] * x[1i,j] } ->min;
con:
supplies {i in plants : sum{j in centers: x[i,j]} = s[i]; }
demands {j in centers : sum{i in plants : x[i,j]} = d[3]; }

CMPL command:

cmpl transportation.cmpl

CMPL 2.1.0 - Manual 89

Solution:

Problem transportation.cmpl

Nr. of variables 12

Nr. of constraints 7

Objective name costs

Solver name HIGHS

Display variables nonzero variables (all)

Display constraints nonzero constraints (all)

Objective status INTEGER OPTIMAL

Objective value 39500 (min!

Variables

Name Type Activity Lower bound Upper bound Marginal
x[1,1] I 3500 0 inf -
x[1,2] I 1500 0 inf -
x[2,2] I 2500 0 inf -
x[2,3] I 2000 0 inf -
x[2,4] I 1500 0 inf -
x[3,1] I 2500 0 inf -
Constraints

Name Type Activity Lower bound Upper bound Marginal
supplies[1] E 5000 5000 5000 -
supplies[2] E 6000 6000 6000 -
supplies[3] E 2500 2500 2500 -
demands [1] E 6000 6000 6000 -
demands [2] E 4000 4000 4000 -
demands [3] E 2000 2000 2000 -
demands [4] E 1500 1500 1500 -

2.4.1.7 Transportation problem using a 2-tuple set

In the case that not all of the connections are possible for technological or commercial reasons (e.g. as in
the picture below) then an alternative model to the model above has to be formulated. Additionally is as-
sumed that the total demand is greater than the supplies.

CMPL 2.1.0 - Manual 90

Plants Centers

1
Boston

2
Chicago

6000

1
Cleveland

5000

4000

6000

2000

4
Lexington

2500

The mathematical model is based on the 2-tuple set routes that contains only the valid connections between

the plants and the centres.
c.-x. = min!

y -y
(i, j)€routes

s.t.

(k, j)E€routes
k=i

> x,=d, ;j=1(1)n

(i,1)E€routes
I=j

x;=0 ;(i, j)€routes

Die sets and parameters are specified in transportation-tuple.cdat

%edges set[2] < 11 12 1 4
22 23 24
31 33 >

plants set <1 .. 3 >

$centers set < 1 .. 4 >

CMPL 2.1.0 - Manual 91

S
°

s[plants] < 5000 6000 2500 >
$d[centers] < 6000 4000 2000 2500 >

%cl[edges] <3 2 6 5 2 3 2 4 >

that is connected to the CMPL model transportation-tuple.cmpl:

$data : plants set, centers set, edges set[2], cl[edges] , s[plants] , d[cen-
ters]

$display nonZeros

var:

x [edges]: real;

obj:
costs: sum{ [i,]J] in edges : c[i,j]l*x[i,7] } ->min;
con:
supplies {i in plants : sum{j in edges *> [i,*] : x[i,3]} = s[i]l;}

demands {j in centers: sum{i in edges *> [*,J] : x[1i,]3]} <= d[j]l;}

The two constraints use a set pattern matching to generate the 1-tuple sets used for the sum-loops. An al-
ternative formulation can used as follows:

supplies {i in plants : sum{j in centers, [i,]j] in edges : x[i,]J]} = s[i]l;}

demands {Jj in centers: sum{i in plants, [i,]j] in edges: x[1i,]]} <= d[]j];}

In this case, the sum-loops iterate over the entire set of the centers or plants, but its is checked
whether the index-tuple [i, 3] exists in the 2-tuple set edges.

Solution:

Problem transportation-tupel.cmpl
Nr. of variables 8

Nr. of constraints 7

Objective name costs

Solver name HIGHS

Display variables nonzero variables (all)

Display constraints nonzero constraints (all)

Objective status OPTIMAL

Objective value 36500 (min!)

Variables

Name Type Activity Lower bound Upper bound Marginal
x[1,1] c 2500 0 inf 0
x[1,2] C 2500 0 inf 0
x[2,2] C 1500 0 inf 0
x[2,3] c 2000 0 inf 0
x[2,4] C 2500 0 inf 0
x[3,1] c 2500 0 inf 0

CMPL 2.1.0 - Manual 92

Constraints

Name Type Activity Lower bound Upper bound Marginal

supplies[1] E 5000 5000 5000 3
supplies[2] E 6000 6000 6000 6
supplies[3] E 2500 2500 2500 2
demands [1] L 5000 -inf 6000 0
demands [2] L 4000 -inf 4000 -1
demands [3] L 2000 -inf 2000 -4
demands [4] L 2500 -inf 2500 -3

2.4.1.8 Transhipment problem

Logistical networks (e.g. distribution networks) often contain so called transhipment nodes beside sources
and destination. A transhipment node has to assemble or divide the incoming shipments into the outgoing
shipments. That means the incoming quantity has to be equal to the outgoing quantity. A transhipment
model is intended to organise an optimal supply of a homogeneous good between a set of sources (origins,
suppliers), a set of transhipment nodes and a set of sinks (destinations, customers) in order to minimise the
total transportation cost (or distances, times, etc.).

In this example, a transport plan between three plants, two warehouses and four distribution centres is to
determined in order to minimise the total transport costs. The unit transport costs are shown in the picture
below as weights at the edges. The capacity of each possible road (edge) is restricted to 500 units due to
the vehicle pool.

Plants Warehouses Distribution centres

Transp. costs Transp. costs @ S

[Euro/unit] [Euro/unit]
Supplies Capacities Demands
[units] [units] [units]

The first step is to determine the data (records and parameters) of the problem in a CmplData file tran-
shipment.cdat. Please note that the transshipment nodes w1 and w2 have to be split (wia, Wilb,
W2a, W2b) due to their capacities and the fact that the min-cost flow model does not allow capacities for
nodes. Therefore, each transshipment node must be split into two, with a cost-free edge connecting the
two. The maximum flow on such an edge equals the capacity of the transhipment node. Consequently, the

CMPL 2.1.0 - Manual 93

definition of the 2-tuple set edges also contains these two auxiliary edges wi1a to wib and w2a to W2b in ad-
dition to the normal edges.

%nodes set < Pl P2 P3 Wla W2a Wlb W2b D1 D2 D3 D4 >

%edges set[2] <

Pl Wla
Pl W2a
P2 Wla
P2 W2a
P3 Wla
P3 W2a
Wla Wlb
Wlb D1
Wlb D2
Wlb D3
Wlb D4
W2a W2b
W2b D1
W2b D2
W2b D3
W2b D4

>

#supplies of the nodes

%s[nodes] = 0 indices <
Pl 400
P2 500
P3 600

>

#demand of the nodes

%d[nodes] = 0 indices <
D1 350
D2 450
D3 500
D4 200

>

#unit transport costs per edge

%c[edges] = 0 indices <
Pl Wla 50
Pl W2a 60
P2 Wla 40
P2 W2a 50
P3 Wla 70
P3 W2a 30
Wlb D1 20
Wlb D2 10
Wlb D3 30
Wlb D4 40
W2b D1 70
W2b D2 30
W2b D3 30
W2b D4 50

>

#max flow on the edges
SmaxCap[edges] = 500 indices <
Wla Wlb 800.0

W2a W2b 750.0

>

The supply vector s contains a supply greater than zero only for the sources. Therefore, the definition of this
vector starts with a default value equal to zero ($s[nodes] =0). All other values have to be indicated by
their index (keyword indices). Each entry starts with the index of the node followed by its supply. All
other arrays are specified in this way. In particular, the default value of the vector maxCap for the maximum
flow of all edges is equal to 500, which corresponds to the capacity of the vehicle used. Only the edges

CMPL 2.1.0 - Manual 94

between the split transshipment nodes have a different upper bound due to the capacities of the ware-
houses.

This CmplData file have to be read into the Cmpl file transhipment.cmpl by using the Cmpl header entry
%data in the first line of the following listing:

$data : nodes set, s[nodes], d[nodes], edges set[2], cl[edges], maxCap[edges]

var:

{ [1,7J] in edges: x[i,]j] : real[O..maxCapl[i, Jl1; }
obj:

costs: sum { [i,]] in edges: c[i,j] * x[i,7] } ->min;
con:

{ 1 in nodes

netFlow[i]: sum{ J in edges *> [1i,*] : x[i,]] }
sum{ J in edges *> [*,i] : x[j,i] } = s[i] - dI[i];

}

The variables of the model are organised in an array x which is defined by using the 2-tuple set edges.
They are all non-negative continuous variables with an upper bound defined in the vector maxCap. These
variables are the flows of the uniform good on the edges. An objective function costs to be minimised is
defined in the objective section as the sum over all edges of the product of the unit transport costs c[i, 5]
and the flow x[i,j] on the edge. For all nodes, a flow balance constraint netFlow[i] has to be created
in which the difference of the outgoing and incoming flow on the left-hand side must be equal to the differ-
ence of the supply s[i] and the demand d[i] of this node on the right-hand side.

After running this problem, the following solution can be found.

Problem transhipment.cmpl

Nr. of variables 16

Nr. of constraints 11

Objective name costs

Solver name HIGHS

Display variables (all)

Display constraints (all)

Objective status OPTIMAL

Objective value 100500 (min!)

Variables

Name Type Activity Lower bound Upper bound Marginal
x[P1,Wla] C 400 0 500 0
x[P1,W2a] C 0 0 500 0
x[P2,Wla] c 300 0 500 0
x[P2,W2a] C 200 0 500 0
x[P3,Wla] C 100 0 500 0
x[P3,W2a] C 500 0 500 -50
x[Wla,Wlb] C 800 0 800 -20
x[W2a,W2b] C 700 0 750 0
x[Wlb,D1] C 350 0 500 0
x[Wlb,D2] C 450 0 500 0
x[Wlb, D3] C 0 0 500 0
x[Wlb,D4] C 0 0 500 0
x [W2b,D1] C 0 0 500 40
x [W2b,D2] C 0 0 500 10

CMPL 2.1.0 - Manual 95

x[W2b, D3] ¢ 500 0 500 -10

x [W2b,D4] c 200 0 500 0
Constraints

Name Type Activity Lower bound Upper bound Marginal
netFlow[P1] E 400 400 400 60
netFlow[P2] E 500 500 500 50
netFlow[P3] E 600 600 600 80
netFlow[Wla] E 0 0 0 10
netFlow[W2a] E 0 0 0 0
netFlow [Wlb] E 0 0 0 -10
netFlow [W2b] E 0 0 0 0
netFlow[D1] E -350 -350 -350 -30
netFlow[D2] E -450 -450 -450 -20
netFlow[D3] E -500 -500 -500 -40
netFlow[D4] E -200 -200 -200 -50

2.4.1.9 Transhipment problem using Excel via CmpiXisData

In this section the previous example is solved again but the data is to be read from an Excel sheet and the
solution is to be written into it. This can be done by Cmpl's CmplXIsData interface. In the first step, a Cm-
plXisData file transhipmentl.xdat is to be created instead an CmplData file as in the previous section.
This is related to an Excel file transhipment.x1sx containing the sheet transhipment.

A B C D E c] H I J K L
1 Nodes Edges
2 supplies demands from to cost rate min. cap. max. cap flow costs
alp | 400 0 Pl Wia 50 0 500 0
4 P2 | 500 0 lp1 Wa2a 60 0 500 0
5 p3 ' 600 0 |p2 Wia 40 0 500 0
6 Wia | o 0 |p2 Wa2a 50 o 500 0
7 W2a 0 0 |p3 Wia 70 0 500 0
& Wib 0 0 lp3 W2a 30 0 500 0
9 wzb o 0 |Wia Wib 0 0 800 0
10 |D1 0 350 |wib D1 20 0 500 0
11 |p2 0 450 |wib D2 10 0 500 0
12 |D3 0 500 |wib D3 30 0 500 0
13 D4 [} 200 |wib D4 40 0 500 0
14 |wza wzb 0 0 750 0
15 total casts 100,500 |wab D1 70 0 500 0
16 |wab D2 30 0 500 0
17 |wab D3 30 0 500 0
18 |wab D4 50 0 500 0

The CmplXisData file starts in the source section with the file transhipment.xlsx and the sheet
transhipment from which the data is to be read and the results written.

@source
%$file < transhipment.xlsx >
$sheet < transhipment>

@input

%edges set[2] < F3:G18 >
$nodes set < A3:A13 >

CMPL 2.1.0 - Manual 96

o

c[edges] < H3:H18 >
d[nodes] < C3:Cl1l3 >
s[nodes] < B3:B13 >

o\°

o

gminCap[edges] < I3:I18 >
tmaxCapl[edges] < J3:J18 >

@Qoutput
%x[edges] .activity < K3:K18 >
%objValue < B1l5 >

The definition of the sets and the parameter arrays in the input section are similar to the corresponding
definitions in the CmplData file in the previous section. The only difference is that the data cannot be spe-
cified within the angle brackets. In CmplXisData the cell ranges have to be defined embedded in angle
brackets. The values of the set edges, for example, are stored in the cells F3:G18. The output section is in-
tended to specify the result elements to be written to the specified Excel sheet. Here, the activities of the
flow variables x have to be written into the cells K3:K18. In addition, the value of the objective function after
optimisation is to be found in cell B15.

The only difference to the previous Cmpl model is the first line. Instead of %data the entry %xIsdata is to be
used.

$xlsdata : nodes set, s[nodes], d[nodes], edges set[2], cledges], maxCap[edges]

The results can be found after the optimisation in the cells specified in the CmplXisData file. It is the same
solution as in the previous section, but now available in Excel (on Windows or macQS).

A B C D E F G H I J K L

1 Nodes Edges

2 supplies demands from cost rate min. cap. max. cap flow costs

3 P1 400 0 P1 Wila 50 0 500 400 20.000
4 P2 500 0 P1 W2a 60 0 500 0 0
5 P3 600 0 P2 Wila 40 0 500 300 12.000
6 Wila 0 0 P2 W2a 50 0 500 200 10.000
7 W2a 0 0 P3 Wila 70 0 500 100 7.000
8 Wib 0 0 P3 W2a 30 0 500 500 15.000
9 W2b 0 0 Wila Wib 0 0 800 800 0
10 D1 0 350 W2a W2b 0 0 750 700 0
11 D2 0 450 Wib D1 20 0 500 350 7.000
12 D3 0 500 Wib D2 10 0 500 450 4.500
13 D4 0 200 Wib D3 30 0 500 0 0
14 Wib D4 40 0 500 0 0
15 w2b D1 70 0 500 0 0
16 W2b D2 30 0 500 0 0
17 W2b D3 30 0 500 500 15.000
18 W2b D4 50 0 500 200 10.000

2.4.1.10 Assignment problem

The following simple assignment problem is to be solved. A dispatcher has to plan the express transports of
a homogeneous good starting from the three stations (S1-S3) to the four customers (D1-D4) for the next
day in order to minimise the total transportation times.

CMPL 2.1.0 - Manual 97

Transportation times [h]
D1 D2 D3 D4

S1 12 25 2 -
S2 20 - 12 -
S3 30 6 10 5

Which station should supply which customer in order to minimise the transportation time?

There are two problems. An assignment problem usually contains two groups of strong SOS1 constraints. A
station must serve exactly one customer aand a customer should be served by exactly one station. Since
there are more customers then stations, only three of the customers can be served. Therefore, a strong
SOS1 must be formulated for each station and a week SOS1 for each of the customers. This means that a
customer can be served by a maximum of one station. The second problem is that three of the possible as-
signments are not allowed and are therefore marked with a hyphen in the matrix. This can be done by for-
mulating a set of allowed combinations via a 2-tuple set or by a Big M approach, i.e. very high assignment
costs for the forbidden combinations.

Die sets and parameters are specified in assignment.cdat, where the assignment costs for the forbidden
combinations are equal to 1000.

N2 set < D1 D2 D3 D4 >
%Nl set < S1 S2 S3 >
%c[N1,N2] <

12 25 2 1000

20 1000 12 1000

30 6 10 5 >

The CMPL model assignment.cmpl can be formulated as follows:

$data : N1 set, N2 set, c[N1,N2]
$display nonZeros

var:
x[N1,N2]: real[0..1];

obj:
sum{ i in N1, j in N2: c[i,]j]l*x[i,J] } => min ;

con:
sos N1 { i in Nl1: sum{ j in N2: x[i,]J] } ;
sos N2 { j in N2: sum{ i in Nl: x[1i,J] } <= 1; }

The CmplData file was read in with %data in the first line. Since the Big M values are used for the assig-
ment costs for the forbidden combinations, the variables are defined over all combinations from the set of
wards N1 and the set of customers N2. The obj section defines that the total assignment costs must be min-
imised over all combinations N1xN2. The set of constraints named sos_N1_ defines the strong SOS1 for the
stations, while the constraints sos_N2_ define the weak SOS1 for the customers.

CMPL 2.1.0 - Manual 98

After running this problem, the following solution can be found.

Problem assignment.cmpl

Nr. of variables 12

Nr. of constraints 7

Objective name line_1

Solver name HIGHS

Display variables nonzero variables (all)

Display constraints nonzero constraints (all)

Objective status OPTIMAL

Objective value 27 (min!)

Variables

Name Type Activity Lower bound Upper bound Marginal
x[S1,D3] C 1 0 1 0
x[S2,D1] C 1 0 1 0
x[S3,D4] c 1 0 1 0
Constraints

Name Type Activity Lower bound Upper bound Marginal
sos N1 [S1] E 1 1 1 10
sos N1 [S2] E 1 1 1 20
sos N1 [S3] E 1 1 1 5
sos N2 [D1] L 1 -inf 1 0
sos_N2_[D3] L 1 -inf 1 -8
sos_N2_[D4] L 1 -inf 1 0

Station S1 serves Customer D3, S2 takes over D1 and customer D4 is served by station S3. All constraints
are satisfied.

Since Cplex, Gurobi, Scip and Cbc are able to use SOS1 and SOS2 directly, CMPL automatically generates
native SOS when one of these solvers is selected.

The CMPL model assignmentl.cmpl is silimar to the model above, but uses CMPL's predefined SOS1
class.

$data assignment.cdat : N1 set, N2 set, c[N1,N2]
$display nonZeros

$solver scip

var:
x[N1,N2]: real[0..1];

obj:
sum{ i in N1, j in N2: c[i,jl*x[i,3] } -> min ;

con:
sos N1 { i in Nl: sum{ j in N2: x[i,3J] } = 1; }

par:
{ J in N2:
s[j] := sos.sosl().name("sos N1 ");
s[jl.add(x[,3]);
}

Instead of the previous constraints sos N1 , the class sos1 () is now used within the last par section. For
each customer i in N2, a SOS1 object is created and assigned to the parameter s[j]. Then the column
for this customer j of the matrix of assignment variables x is added to this SOS1 object.

CMPL 2.1.0 - Manual 99

In this example, Scip is used (%3solver scip). Since it supports SOS directly, running this problem leads to
the same solution as before, but with only 3 constraints instead of 7 in the previous solution.

Problem assignmentl.cmpl

Nr. of variables 12

Nr. of constraints 3

Objective name line_1

Solver name SCIP

Display variables nonzero variables (all)

Display constraints nonzero constraints (all)

Objective status optimal solution found

Objective value 27 (min!)

Variables

Name Type Activity Lower bound Upper bound Marginal
x[S1,D3] c 1 0 1 -
x[S2,D1] c 1 0 1 -
x[S3,D4] c 1 0 1 -
Constraints

Name Type Activity Lower bound Upper bound Marginal
sos N1 [S1] E 1 1 1 -
sos N1 [S2] E 1 1 1 -
sos_N1_[S3] E 1 1 1 -

2.4.1.11 Quadratic assignment problem

Assignment problems are special types of linear programming problems which assign assignees to tasks or
locations. The goal of this quadratic assignment problem is to find the cheapest assignments of 7 machines
to nlocations. The transport costs are influenced by

. the distance d jxbetween location jand location & and
« the quantity {,; between machine A and machine / which is to be transported.
The assignment of a machine 4 to a location jcan be formulated with the Boolean variables

X = 1 ,if machineh is assigned to location j
"o if not

The general model can be formulated as follows:

n n n n
Z Z Z Z th,- 'djk'th'Xik—»min!

h=1i=1i#h j=1 k=1k#]
S.t.

Y xy=1;h=1l1]n
j=1

> x,=1;j=1(1)n

h=1

x,; €0,1;h=1(1]n,j=1(1/n

Because of the product X;; -X;in the objective function the model is quadratic programming problem (QP). If

the solver called does not support QP (CBC, GLPK), then the products of these variables are equivalently

CMPL 2.1.0 - Manual 100

transformation into a set of inequations by CMPL. If the solver supports quadratic optimisation (Cplex, Gur-
obi, Scip), then the linearisation is switched off automatically and the QP algorithm is used.

Consider the following case: There are 5 machines and 5 locations in the given factory. The quantities of
goods which are to be transported between the machines are indicated in the figure below.

As shown in the picture below the machines are not fully connected. Therefore it makes sense to formulate
the objective function with a sum over a 2-tuple set with the name edges for the valid combinations
between the machines.

n n n
. . . in!
Z Z Z Chi djk Xpj "Xy — min:

|h,i|Eedges j=1 k=1k#j

The distances between the locations are given in the following table:

from/to 1 2 3 4 5
1 M 1 2 3 4
2 2 M 1 2 3
3 3 1 M 1 2
4 2 3 1 M 1
5 5 3 2 1 M

The CMPL model quadratic-assignment.cmpl can be formulated as follows:

$display nonZeros
par:
n:=5;
dl,1:= ((o, 1, 2, 3, 4),
(2, 0,1, 2, 3),
(3’ ll OI ll 2)’
(2, 3, 1, 0, 1),
(5, 3, 1, 1, 0));
edges := set ([1,2] , I[%1,3], [1,5], [2,3] , [3,4] , [3,5] , [4,5]);
t[edges] := (10,3,20,15,5,20,35);
var:
x[1l..n,1..n]: binary;
obj:
costs: sum{ [h,1] in edges, j in 1..n, k in 1..n , k<>7j:
tlh,i1*d[j,k]l*x[h,jl*x[i,k] } -min;

CMPL 2.1.0 - Manual 101

con:
location { h in 1..n: sum{ j in 1..n: x[h,3] } = 1; }
machine { j in 1..n: sum{ h in 1..n: x[h,3j] } = 1; }

If this problem CMPL was run with HiGHS

Cmpl quadratic-assignment.cmpl
then the following solution are found.

Problem quadratic-assignment.cmpl

Nr. of variables 165

Nr. of constraints 430

Objective name costs

Solver name HIGHS

Display variables nonzero variables (all)

Display constraints nonzero constraints (all)

Objective status INTEGER OPTIMAL

Objective value 134 (min!)

Variables

Name Type Activity Lower bound Upper bound Marginal
x[1,4] B 1 0 1 -
x[2,1] B 1 0 1 -
x[3,2] B 1 0 1 -
x[4,5] B 1 0 1 -
x[5,3] B 1 0 1 -
Constraints

Name Type Activity Lower bound Upper bound Marginal
location([1] E 1 1 1 -
location[2] E 1 1 1 -
location[3] E 1 1 1 -
location([4] E 1 1 1 -
location[5] E 1 1 1 -
machine[1] E 1 1 1 -
machine[2] E 1 1 1 -
machine[3] E 1 1 1 -
machine[4] E 1 1 1 -
machine[5] E 1 1 1 -

The optimal assignments of machines to locations are given in the table below:

locations
1 2 3 4 5
1 X
a2 X
£
5 3 X
©
E 4 X
5 X

CMPL 2.1.0 - Manual 102

The problem size is 430 constraints and 165 variables including all auxiliary variables and constraints which
are not shown in the solution by default.

If CMPL is run with Scip or Cplex

%solver scip

then a problem with only 10 constraints and 25 variables are generated and the same solution is found
much faster:

Problem quadratic-assignment.cmpl

Nr. of variables 25

Nr. of constraints 10

Objective name costs

Solver name SCIP

Display variables nonzero variables (all)

Display constraints nonzero constraints (all)

Objective status optimal solution found

Objective value 134 (min!)

Variables

Name Type Activity Lower bound Upper bound Marginal
x[1,4] B 1 0 1 -
x[2,1] B 1 0 1 -
x[3,2] B 1 0 1 -
x[4,5] B 1 0 1 -
x[5,3] B 1 0 1 -
Constraints

Name Type Activity Lower bound Upper bound Marginal
location([1] E 1 1 1 -
location[2] E 1 1 1 -
location[3] E 1 1 1 -
location([4] E 1 1 1 -
location[5] E 1 1 1 -
machine[1] E 1 1 1 -
machine[2] E 1 1 1 -
machine[3] E 1 1 1 -
machine[4] E 1 1 1 -
machine[5] E 1 1 1 -

2.4.1.12 Quadratic assignment problem using the solutionPool option

It is for several reasons interesting to catch the feasible integer solutions found during a linear MIP (QP) op-
timisation. Gurobi and Cplex are able to generate and store multiple solutions for such a problem. With the
display option solutionPool these feasible integer solutions can be shown in the solution report. It is re-
commended to control the behaviour of the solution pool by setting the particular Gurobi or Cplex solver op-
tions.

If the CMPL model for quadratic assignment problem above is extended by the following CMPL header
entries, then all feasible integer solutions found by Cplex are shown in the solution. The option $display
ignoreCons is intended to hide the constraints from the solution.

CMPL 2.1.0 - Manual 103

%solver cplex

%display solutionPool

%display ignoreCons

Solution:

Problem

Nr. of variables
Nr. of constraints
Objective name

Nr. of solutions
Solver name

Display variables
Display constraints

Solution nr.
Objective status
Objective value

Variables
Name

Constraints
Name

location([1]
location([2]
location[3]
location[4]
location[5]
machine[1]

machine[2
machine [
machine [
machine [

Solution nr.
Objective status
Objective value

Variables
Name

Constraints
Name

location([1]
location[2]
location[3]
location([4]
location[5]
machine[1]

machine[2
machine [

machine [
machine [

Solution nr.
Objective status
Objective value

Variables
Name

quadratic-assignment.cmpl
25

10

costs

5

CPLEX

nonzero variables (all)
nonzero constraints (all)

integer optimal solution
134 (min!)

Type Activity
B 1
B 1
B 1
B 1
B 1

Type Activity
E 1
E 1
E 1
E 1
E 1
E 1
E 1
E 1
E 1
E 1

2

integer feasible solution
134 (min!)

Type Activity
B 1
B 1
B 1
B 1
B 1

Type Activity
E 1
E 1
E 1
E 1
E 1
E 1
E 1
E 1
E 1
E 1

3

integer feasible solution
171 (min!)

Type Activity

Lower bound

Lower bound

Lower bound

Upper bound

Upper bound

Upper bound

Marginal

Marginal

Marginal

CMPL 2.1.0 - Manual

104

Constraints

Name Type Activity Lower bound Upper bound Marginal
location([1] E
location[2] E
location[3] E
location([4] E
location([5] E
machine[1] E
machine[2 E
machine [E
machine [E
machine [E

Solution nr. 4
Objective status integer feasible solution
Objective value 163 (min!)

Variables
Name Type Activity Lower bound Upper bound Marginal

Constraints

Name Type Activity Lower bound Upper bound Marginal
location([1] E
location[2] E
location[3] E
location([4] E
location[5] E
machine[1] E
machine[2 E
machine[E
machine [E
machine [E

Solution nr. 5
Objective status integer feasible solution
Objective value 191 (min!)

Variables
Name Type Activity Lower bound Upper bound Marginal

Constraints

Name Type Activity Lower bound Upper bound Marginal
location[1] E
location([2] E
location([3] E
location([4] E
location[5] E
machine[1] E
machine E
machine E
machine E
machine E

CMPL 2.1.0 - Manual 105

2.4.1.13 Generic travelling salesman problem

The asymmetric travelling salesman problem is well known and often described. In the following CMPL
model the (x, y) coordinates of the cities are defined by random numbers and the distances are calculated
by the Euclidian distance of the (x,y) coordinates and disturbed by smaller random numbers to generated
an asymmetric distance matrix. To reproduce the solution, a rand seed is set. The CMPL model tsp.cmpl
can be formulated as follows:

%$display nonZeros

par:
seed:=srand(100) ;
M:=10000;

nrOfCities:=10;
cities:=1..nrOfCities;

{i in cities:
xpl[i] :=rand(100) ;
ypli] :=rand(100) ;

}
{i in cities, j in cities:
{i==7:
dist[i,J]:=M; |
default:

dist([i,]j]:= sgrt((xplil-xp[]j])"2 + (yplil-yp[3])"2);
dist[j,1]:= dist[i,jl+rand(10)-rand(10);

}

var:
x[cities,cities]: binary;
u[cities]: real[l..];

obj:
sum{i in cities, j in cities: dist[i,jl* x[i,]j]} ->min;

con:
in edges {J in cities: sum{i in cities: x[i,]]}=1; }
out _edges {i in cities: sum{j in cities: x[i,]]}=1; }
{i in 2..nrOfCities, j in 2..nrOfCities, i<>j:
subTourCon[i,j]: uli] - ul[j] + nrOfCities * x[i,]j] <= nrOfCities-1;

}

CMPL command:

cmpl tsp.cmpl

Solution:

Problem tsp.cmpl

Nr. of variables 109

Nr. of constraints 92

Objective name line 1

Solver name HIGHS

Display variables nonzero variables (all)

Display constraints nonzero constraints (all)

CMPL 2.1.0 - Manual 106

Objective status

Objective value

Variables
Name

p e S St S

G0N O o —
R i S S

XX XX XXXXXXESSEeSeceg e
C O @I N OE W R R ©®do g W

o~

INTEGER OPTIMAL
321.319

Activity

Lower bound

Upper bound

inf
inf
inf
inf
inf
inf
inf
inf
inf

—

R e = = =

Marginal

Name

]

out_edges_[1]

out_edges_[2]

out_edges_[3]

out_edges_[4]

out_edges [5]

out _edges [6]

out edges [7]

out_edges_[8]

out_edges_[9]

out_edges_[10]

subTourCon[2, 3]
subTourCon[2,4]
subTourCon[2, 5]
subTourCon[2, 6]
subTourCon[2,7]
subTourCon[2, 8]
subTourCon[2, 9]
subTourCon[2,10]
subTourCon|[3,2]
subTourCon[3,4]
subTourCon|[3,5]
subTourCon[3, 6]
subTourCon[3, 7]
subTourCon[3, 8]
subTourCon[3, 9]
subTourCon[3,10]
subTourCon[4,2]
subTourCon[4, 3]
subTourCon[4,5]
subTourCon[4, 6]
subTourCon([4,7]
subTourCon[4, 8]
subTourCon[4, 9]
subTourCon[4,10]
subTourCon[5,2]
subTourCon[5, 3]
subTourCon[5,4]
subTourCon[5, 6]
subTourCon[5, 7]
subTourCon[5, 8]
subTourCon[5, 9]
subTourCon[5,10]
subTourCon[6,2]
subTourCon[6, 3]
subTourCon[6,4]

sl s e e e e e e O e s o e o O Y s e o O o e e e s o e o O Y s e o O 5 5 I e 3 5 s I T 3 5 s 3 e 5 5 5 [= [e

w0 =0 N

PR RERRRRRREERRRRRRR P &

[

-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf
-inf

O W WWIWVWWWWWWWWOWVWWVWWVWWWOWWOVOWVWWWWWWVWWWOWWOVWOVWOVWWOWWOWOWUOURRRERRERERRERRLRERERRRRRERRRR R

CMPL 2.1.0 - Manual

107

subTourCon[6,5] L -2 -inf 9 -
subTourCon[6, 7] L -4 -inf 9 -
subTourCon[6, 8] L -3 -inf 9 -
subTourCon[6, 9] L 9 -inf 9 -
subTourCon[6,10] L 2 -inf 9 -
subTourCon[7, 2] L 9 -inf 9 -
subTourCon([7, 3] L 5 -inf 9 -
subTourCon([7,4] L 7 -inf 9 -
subTourCon[7,5] L 2 -inf 9 -
subTourCon[7,6] L 4 -inf 9 -
subTourCon[7, 8] L 1 -inf 9 -
subTourCon[7, 9] L 3 -inf 9 -
subTourCon[7,10] L 6 -inf 9 -
subTourCon[8,2] L -2 -inf 9 -
subTourCon[8, 3] L 4 -inf 9 -
subTourCon([8,4] L 6 -inf 9 -
subTourCon[8,5] L 1 -inf 9 -
subTourCon[8, 6] L 3 -inf 9 -
subTourCon[8, 7] L 9 -inf 9 -
subTourCon[8, 9] L 2 -inf 9 -
subTourCon[8,10] L 5 -inf 9 -
subTourCon[9, 2] L -4 -inf 9 -
subTourCon[9, 3] L 2 -inf 9 -
subTourCon[9,4] L 4 -inf 9 -
subTourCon[9, 5] L 9 -inf 9 -
subTourCon[9, 6] L 1 -inf 9 -
subTourCon[9, 7] L -3 -inf 9 -
subTourCon[9, 8] L -2 -inf 9 -
subTourCon[9,10] L 3 -inf 9 -
subTourCon[10,2] L -7 -inf 9 -
subTourCon[10, 3] L 9 -inf 9 -
subTourCon[10,4] L 1 -inf 9 -
subTourCon[10,5] L -4 -inf 9 -
subTourCon[10,6] L -2 -inf 9 -
subTourCon[10,7] L -6 -inf 9 -
subTourCon[10, 8] L -5 -inf 9 -
subTourCon[10, 9] L -3 -inf 9 -

By analysing the position variables u and knowing that the start city is node 1, the following optimal tour is
found:
1-4—-10-3—-6—-9—-5—-8—-7—-2—1

2.4.2 Other selected examples
This section illustrates how CMPL can be used as simple solver or heuristic.

2.4.2.1 Solving the knapsack problem

CMPL can be used as a heuristic solver for knapsack problems.

The idea of the following models is to evaluate each item using the relation between the value and weight
per item. The knapsack will be filled with the items sorted in descending order until the capacity limit or the
minimum value is reached. Using the data from the examples in section 2.4.1.5 a CMPL model to maximize
the total sales relative to capacity can be formulated as follows.

Model 1: maximize the total sales knapsack-max-heuristic.cmpl

%$include knapsack-data.cmpl

#calculating the relative value of each box
{j in boxes: val[jl:= p[Jl/wljl; }

sumSales:=0;
sumWeight:=0;
#initial solution

CMPL 2.1.0 - Manual 108

x[]:=(0,0,0,0,0,0,0,0,0,0);

{ 1 in boxes:
maxVal:=max (vall[]);
{J in boxes:
{ maxVal=val[7j]
{ sumWeight+w[]j] <= maxWeight:
x[J]:=1;
sumSales:=sumSales + pl[J];
sumiWeight :=sumWeight + w[]j];
}
val[j]:=0;
break j;

}

echo ("Solution found");

echo ("Optimal total sales: ", sumSales);
echo("Total weight : " ,sumWeight);

{j in boxes: echo("x "+ j + ": " + x[J]); }
Solution:

Solution found
Optimal total sales: 690

Total weight : 57
x 1: 1
x 2: 1
x 3: 0
x 4: 1
x 5: 0
x 6: 1
x 7: 1
x 8: 0
x 9: 1
x 10: 1

This solution is of course worse than the optimal solution in section 2.4.1.5, but it is a feasible solution.

Model 2: minimize the total weight knapsack-min-heuristic.cmpl

$include knapsack-data.cmpl

#calculating the relative value of each box
{7 in boxes: val[jl:= w[jl/pl[j]; }

M:=10000;
sumSales:=0;
sumWeight:=0;
#initial solution
x[]:=(0,0,0,0,0,0,0,0,0,0);
{sumSales < minSales:

maxVal:=min(vall[]);

{7 in boxes:

{ maxvVal=vall[j]

{ sumSales < minSales:
x[j]:=1;
sumSales:=sumSales + pl[j];
sumWeight :=sumWeight + w[]j];

CMPL 2.1.0 - Manual 109

}

val[j]:=M;
break 7j;
}
}
repeat;
}
echo("Solution found");

echo("Optimal total weight : " + sumWeight);
echo("Total sales: "+ sumSales);

{j in boxes: echo("x "+ j + ": " + x[j]); }
Solution:

Solution found
Optimal total weight : 47
Total sales: 630

x 1: 1
x 2: 1
x 3: 0
x 4: 1
x 5: 0
x 6: 0
x 7: 0
x 8: 0
x 9: 1
x 10: 1

This solution is identical to the optimal solution in section 2.4.1.5.

2.4.2.2 Finding the maximum of a concave function using the bisection
method

One of the alternative methods for finding the maximum of a negative convex function is the bisection
method. (Hillier and Liebermann 2010, p. 554f.) A CMPL programme to find the maximum of

f(x):12X—3x4—2x6 can be formulated as follows (bisection.cmpl):

#distance epsilon
e:=0.00001;
#initial solution
x1l:= 0;

X0:= 2;

XN : (x1+x0)/2;

{ (xo-x1) > e
fd:= 12 - 12 * xn”™3 - 12 * xn"5;
{ fd >= 0 : x1l:=xn; |
fd <= 0 : xo:=xn ;}

xn:= (x1+x0)/2;
fx = 12 * xn -3 * xn™4 - 2 * xn"6;
echo("f'(xn): " + fd + " x1: " + x1 +
" xo: " + xo0 + " xn: " + xn +
" f(xn): " + £fx);

CMPL 2.1.0 - Manual 110

repeat;

}

echo ("Solution found"):;
echo("x: "+ xn);

echo("function value: " 4+ (12 * xn -3 * xn™4 - 2 * xn"6));

Solution:

f'(xn): -12 x1: 0 xo: 1 xn: 0.5 f(xn): 5.78125

f'(xn): 10.125 x1: 0.5 xo: 1 xn: 0.75 f(xn): 7.69482

f'(xn): 4.08984 x1: 0.75 xo: 1 xn: 0.875 f(xn): 7.84386

f'(xn): -2.19397 x1: 0.75 xo: 0.875 xn: 0.8125 f(xn): 7.86718

f'(xn): 1.31437 x1: 0.8125 xo: 0.875 xn: 0.84375 f(xn): 7.88291

f'(xn): -0.339699 x1: 0.8125 xo: 0.84375 xn: 0.828125 f(xn): 7.8815
f'(xn): 0.511253 x1: 0.828125 xo: 0.84375 xn: 0.835938 f(xn): 7.88387
f'(xn): 0.0918924 x1: 0.835938 xo0: 0.84375 xn: 0.839844 f(xn): 7.88381
f'(xn): -0.122357 x1: 0.835938 xo0: 0.839844 xn: 0.837891 f(xn): 7.88394
f'(xn): -0.0148481 x1: 0.835938 xo0: 0.837891 xn: 0.836914 f(xn): 7.88393
f'(xn): 0.038618 x1: 0.836914 xo0: 0.837891 xn: 0.837402 f(xn): 7.88394
f'(xn): 0.0119089 x1: 0.837402 xo: 0.837891 xn: 0.837646 f(xn): 7.88395
f'(xn): -0.00146357 x1: 0.837402 xo0: 0.837646 xn: 0.837524 f(xn): 7.88395
f'(xn): 0.00522419 x1: 0.837524 xo0: 0.837646 xn: 0.837585 f(xn): 7.88395
f'(xn): 0.00188068 x1: 0.837585 xo: 0.837646 xn: 0.837616 f(xn): 7.88395
f'(xn): 0.000208652 x1: 0.837616 xo: 0.837646 xn: 0.837631 f(xn): 7.88395
f'(xn): -0.000627434 x1: 0.837616 xo: 0.837631 xn: 0.837624 f(xn): 7.88395
f'(xn): -0.000209385 x1: 0.837616 xo: 0.837624 xn: 0.83762 f(xn): 7.88395
Solutlon found

x: 0.83762
function value: 7.88395

3 CMPL software package

3.1 CMPL software package in a glance

CMPL (<Coliop|Coin> Mathematical Programming Language) is a mathematical programming language and
a system for mathematical programming and optimisation of linear optimisation problems.

CMPL executes HiGHS, SCIP, CBC, GLPK, Gurobi or CPLEX directly to solve the generated model instance.
The CMPL package contains HiGHS as a standard solver as well as SCIP. Because it is also possible to trans-
form the mathematical problem into MPS or Free-MPS, alternative solvers can be used.

The CMPL distribution contains Coliop which is an IDE (Integrated Development Environment) for CMPL and
also pyCMPL, jCMPL and CMPLServer.

PYCMPL is the CMPL application programming interface (API) for Python and JCMPL is CMPL's Java API.
The main idea of this APIs is to define sets and parameters within the user application, to start and control
the solving process and to read the solution(s) into the application if the problem is feasible. All variables,
objective functions and constraints are defined in CMPL. These functionalities can be used with a local CMPL
installation or a CMPLServer.

CMPL 2.1.0 - Manual 111

CMPLServer is an XML-RPC-based web service for distributed and grid optimisation that can be used with
CMPL, pyCMPL and jCMPL. It is reasonable to solve large models remotely on the CMPLServer that is in-
stalled on a high performance system. CMPL provides specific XML-based file formats for the communication
between a CMPLServer and its clients.

3.2 Download and installation

CMPL binaries for Windows, Linux and macOS are available at http://www.coliop.org.

Linux and Windows:

An installation is not required after unpacking the ZIP or tar.gz file. The CMPL package works out of the box
in any folder.

macOS:
To use CMPL on macOS the following installation steps are necessary:

1) Download CMPL from http://www.coliop.org

2) Unzip CMPL package and copy (or move) the Cmpl2 folder to /Applications
3) Open Terminal

The easiest way to open Terminal is to press Cmd+Space to open Spotlight Search. Afterward type
type Terminal in the Spotlight input field. Simply select the Terminal entry in the search result list to
open Terminal.

4) Run Cmpl setup script in Terminal (just copy and paste the following command and press enter)
/Bpplications/Cmpl2/cmpl setup

To start CmplShell, the link cmplShell in /Applications/Cmpl2 have to be double-clicked. In addition
a user can do so in Coliop (Menu Actions -> Open CmplShell). To start cmpl on the command line please
use it inside CmplShell. If cmpl.opt or cmplServer.opt need to be edited, just open them via the links
inthe /Applications/Cmpl2/opt subfolder.

3.3 CMPL

3.3.1 Running CMPL

It is recommanded to start cmpl inside CmplShell. On Windows and Linux, a user can also run CMPL by
starting the cmp1 script in the CMPL folder (not in CMPLHOME/bin). A CMPL model can be solved with the
command cmpl <problemname>.cmpl.

CMPL 2.1.0 - Manual 112

http://www.coliop.org/
http://www.coliop.org/

3.3.2 Usage of the CMPL command line tool

CMPL can be controlled by options, which can be specified as command line arguments or as options within
a CMPL header.

Usually, the first option is CMPL file followed by CMPL, solver and/or display options.

cmpl <cmplFile> [<options>]

The elements of CMPL header correspond to the command line options that can be used in the call to CMPL.
Exceptions are only those command line options that must already be evaluated before the CMPL file is read
and therefore cannot be used in CMPL header.

Each line for CMPL header starts with % as the first non-whitespace character. This is followed by the name
of the command line option (without the -, which introduces a command line option in the command line).
This is followed by the arguments of the command line option, separated by whitespace.

Alternatively, the line can begin with %arg. In this case, command line options and their arguments can be
specified as on the command line itself (i.e. with - in front of the name of the command line option). Several
command line options can then also be on one line.

Important options are described below.
Input options:

Command line:

-1 <cmplFile> Input file (the file can also be specified as first option without
_|)
-include <file> Reads a Cmpl file additionally to the main Cmpl file
-data <file>[: elements] Reads a CmplData file
-xlsData <file>[: elements] Reads a CmplXIsData file
Cmpl header:
$include <file> Reads a Cmpl file additionally to the main Cmpl file
%data <file>[: elements] Reads a CmplData file
$xlsData <file>[: elements] Reads a CmplXIsData file
Output options:

Command line:

-m [<File>] Exports model in MPS format

—fm [<File>] Exports model in Free-MPS format in a file or stdout
-matrix [<File>] Exports the model as matrix in a file

-p [<File>] Writes protocol messages into <file>

-cmsg [<File>] Writes CMPL messages into <file>

-solution [<File>] Writes the solution in CmplSolution XML format in a file

CMPL 2.1.0 - Manual 113

-solutionAscii [<File>] Writes the solution in ASCII format in a file
-solutionCsv [<File>] Writes the solution in CSV format in a file

Cmpl header:

gm [<File>] Exports model in MPS format

$fm [<File>] Exports model in Free-MPS format in a file or stdout
smatrix [<File>] Exports the model as matrix in a file

5p [<File>] Writes protocol messages into <file>

scmsg [<File>] Writes CMPL messages into <file>

$solution [<File>] Writes the solution in CmplSolution XML format in a file
$solutionAscii [<File>] Writes the solution in ASCII format in a file
$solutionCsv [<File>] Writes the solution in CSV format in a file

Display options:

Command line:

-display nonZeros Only activities with an value unequal to zero are shown in the
solution.

-display ignoreVars Variables are not shown in the solution.

-display ingnoreCons Constraints are not shown in the solution.

-display generatedElements Columns and rows generated by CMPL are shown.

-display <var|con> <varOr- QOnly variables and/or constraints with a name matching the
ConName=pattern> pattern are shown.

-display solutionPool Shows multiple solutions (only Cplex or Gurobi)

Cmpl header:

$display nonZeros Only activities with an value unequal to zero are shown in the
solution.

5display ignoreVvars Variables are not shown in the solution.

$display ingnoreCons Constraints are not shown in the solution.

tdisplay generatedElements Columns and rows generated by CMPL are shown.

Ssdisplay <var|con> <varOr- Only variables and/or constraints with a name matching the
ConName=pattern> pattern are shown.
$display solutionPool Shows multiple solutions (only Cplex or Gurobi)

CMPL 2.1.0 - Manual 114

Solver and solver options:

Command line:
-solver <highs|cbc|glpk]
sciplcplex|gurobi>
-opt <highs|cbc|glpk|scipl|
cplex|gurobi>
<option>[=<val>]

Cmpl header:
%$solver <highs|cbc|glpk]
scip| cplex|gurobi>
sopt <highs|cbc|glpk]|scip]
cplex|gurobi>
<option>[=<val>]

CmplServer options:

Command line:

-url <url>

-send

-knock

-retrieve

-cancel
-maxTries <x>

-maxTime <x>

Cmpl header:

Surl <url>

%$send

$knock

$retrieve

%cancel

$maxTries <x>

CMPL 2.1.0 - Manual

Specifies the solver to be invoked.

Specifies options for the solver.

Specifies the solver to be invoked.

Specifies options for the solver.

Url of a CmplServer - Without other arguments, the problem
are solved on the CmplServer (synchronous mode)

Sends a problem to a CmplServer which have to be specified
with -url (asynchronous mode)

Obtains the status of a problem on the CmplServer and
fetches the stdout and displays it (asynchronous mode).

Retrieves the results of the problem from the CmplServer
(asynchronous mode)

Cancels the problem at the CmplServer (asynchronous mode)
Maximum number of tries of failed CmplServer calls
Maximum time in <x> seconds that a problem waits in a Cm-
plServer queue.

Url of a CmplServer - Without other arguments, the problem
are solved on the CmplServer (synchronous mode)

Sends a problem to a CmplServer which have to be specified
with -url (asynchronous mode)

Obtains the status of a problem on the CmplServer and
fetches the stdout and displays it (asynchronous mode).

Retrieves the results of the problem from the CmplServer
(asynchronous mode)

Cancels the problem at the CmplServer (asynchronous mode)
Maximum number of tries of failed CmplServer calls

115

$maxTime <x>

Other options:

Command line:
-silent
-int-relax
-threads <n>
-ordered
-check-only
-syntax-xml [<file>]

-help

Cmpl header:
$silent
$int-relax

%$threads <n>

%ordered
%check-only
$syntax-xml [<file>]

Shelp

Examples:

Maximum time in <x> seconds that a problem waits in a Cm-
plServer queue.

Suppresses CMPL and solver messages

Integer or binary variables are used as continues variables.

Use maximal n running threads (0: no threading)

Ordered execution in all explicit and implicit iterations

Only syntax check

Writes syntax structure of the Cmpl input as xml to <file>

Prints all options to stdOut

Suppresses CMPL and solver messages

Integer or binary variables are used as continues variables.

Use maximal n concurrently running threads (0: no thread-

ing)

Ordered execution in all explicit and implicit iterations

Only syntax check

Writes syntax structure of the Cmpl input as xml to <file>

Prints all options to stdOut

cmpl test.cmpl

Solves the problem test.cmpl locally with the de-
fault solver and displays a standard solution report

cmpl test.cmpl -solver cbc

Solves the problem test.cmpl locally using CBC
and displays a standard solution report

cmpl test.cmpl
-url http://194.95.44.187:8008

Solves the problem test.cmpl remotely with the
defined CMPLServer and displays a standard solution
report

cmpl test.cmpl -solutionCsv

Solves the problem test.cmpl locally with the de-
fault solver writes the solution in the CSV-file
test.csv and displays a standard solution report

cmpl "/Users/test/Documents/
Projects/Project 1/test.cmpl"

If the file name or the path contains blanks then one
can enclose the entire file name in double quotes.

cmpl test.cmpl -m test.mps

Reads the file test.cmpl and generates the MPS-
file test .mps.

cmpl test.cmpl -fm test.mps

Reads the file test.cmpl and generates the Free-
MPS-file test .mps.

CMPL 2.1.0 - Manual

116

3.3.3 Using CMPL with several solvers

There are two ways to interact with several solvers. It is recommended to use one of the solvers which are
directly supported and executed by CMPL. The CMPL package contains HiGHS as a standard solver as well as
SCIP. If you have installed CBC, Gurobi, CPLEX, GLPK then you can also use these solvers directly. To invoke
CPLEX, CBC or GLPK, the file cmpl.opt in CMPLHOME/bin must be edited, specifying the full filename of
the binary after the keyword for the solver. Gurobi works out of the box after installing it.

Example for cmpl.opt:

HIGHS ../Thirdparty/Highs/highs
CBC ../Thirdparty/CBC/cbc

GLPK ../Thirdparty/GLPK/glpsol
SCIP ../Thirdparty/Scip/scip

CPLEX /Applications/CPLEX Studio2211/cplex/bin/arm64 osx/cplex
GUROBI gurobiCmpl

Because CMPL transforms a CMPL model into an MPS or a Free-MPS, the generated model instance can be
solved by using most of the free or commercial solvers.

3.3.3.1 HiGHS

HiGHS is high performance serial and parallel software for solving large-scale sparse linear programming
(LP), mixed-integer programming (MIP) and quadratic programming (QP) models, developed in C++11, with
interfaces to C, C#, FORTRAN, Julia and Python. HiGHS is CMPL's default solver and part of the CMPL distri-
bution. For more information please visit https://highs.dev.

Since HiGHS is the default solver, HiGHS does not need not to be specified:

cmpl <problem>.cmpl #Solves the problem locally with HiGHS

It is possible to use almost of the HiGHS solver options within the CMPL header. Please see https://ergo-

code.github.io/HiGHS/dev/options/definitions/ for a list of useful solver parameters.

Usage of HiGHS parameters within the CMPL header:

%$opt highs <option>[=<val>]

3.3.3.2 SCIP

SCIP is a project of the Konrad-Zuse-Zentrum fiir Informationstechnik Berlin (ZIB). "SCIP is a framework for
Constraint Integer Programming oriented towards the needs of Mathematical Programming experts who
want to have total control of the solution process and access detailed information down to the guts of the
solver. SCIP can also be used as a pure MIP solver or as a framework for branch-cut-and-price. SCIP is im-
plemented as C callable library and provides C++ wrapper classes for user plugins. It can also be used as a
standalone program to solve mixed integer programs." [http://scip.zib.de/whatis.shtml](Achterberg 2009)

CMPL 2.1.0 - Manual 117

http://scip.zib.de/whatis.shtml
https://ergo-code.github.io/HiGHS/dev/options/definitions/
https://ergo-code.github.io/HiGHS/dev/options/definitions/
https://highs.dev/

Since SCIP is intended for solving mixed integer programming (MIP) problems, SCIP does not show margin-
als when an LP is solved.

The CMPL package contains SCIP and it can be used by the following command:

cmpl <problem>.cmpl -solver scip

or by the CMPL header flag:

%solver scip

All SCIP parameters described in the SCIP Doxygen Documentation can be used in the CMPL header.
Please see: https://scipopt.org/doc/html/SHELL.php#TUTORIAL PARAMETERS

Usage SCIP parameters within the CMPL header:

%opt scip <option>[=<val>]

3.3.3.3 CBC

Cbc (Coin-or branch and cut) is an open-source mixed integer programming solver written in C++. It can be
used as a callable library or stand-alone solver. The CMPL distribution contains the CBC binary. For more in-
formation please visit https://projects.coin-or.org/Cbc.

If CBC is installed on the same computer as CMPL then it can be connected to CMPL by changing the entry
CBC in the file <CMPLHOME>/bin/cmpl.opt. It can be used with the following command:

cmpl <problem>.cmpl -solver cbc #Solves the problem locally with CBC

or by the CMPL header flag:

$solver cbc

It is possible to use most of the CBC solver options within the CMPL header. Usage of CBC parameters
within the CMPL header:

%opt cbc <option>[=<val>]

CMPL 2.1.0 - Manual 118

https://projects.coin-or.org/Cbc
https://scipopt.org/doc/html/SHELL.php#TUTORIAL_PARAMETERS

3.3.3.4 GLPK

The GLPK (GNU Linear Programming Kit) package is intended for solving large-scale linear programming
(LP), mixed integer programming (MIP), and other related problems. "The GLPK package includes the pro-
gram glpsol, which is a stand-alone LP/MIP solver. This program can be invoked from the command line ...
to read LP/MIP problem data in any format supported by GLPK, solve the problem, and write the problem
solution obtained to an output text file." (GLPK 2014, p. 166.). For more information please visit the GLPK
project website: http://www.gnu.org/software/glpk.

If GLPK is installed on the same computer as CMPL then GLPK can be connected to CMPL by changing the
entry GLPK in the file <CMPLHOME>/bin/cmpl.opt. It can be used with the following command:

cmpl <problem>.cmpl -solver glpk

or by the CMPL header flag:

%solver glpk

Most of the GLPK solver options can be used by defining solver options within the CMPL header. Usage of
GLPK parameters within the CMPL header:

$opt glpk <option>[=<val>]

3.3.3.5 Gurobi

"The fastest and most powerful mathematical programming solver available for your LP, QP and MIP (MILP,
MIQP, and MIQCP) problems. See why so many companies are choosing Gurobi for better performance,
faster development and better support." (https://www.gurobi.com/products/gurobi-optimizer/)

If Gurobi is installed on the same computer as CMPL then Gurobi can be executed directly only by using the
command:

cmpl <problem>.cmpl -solver gurobi

or by the CMPL header flag:

$solver gurobi

All Gurobi parameters (excluding NodefileDir, LogFile and ResultFile) described in the Gurobi manual can be
used in the CMPL header.

CMPL 2.1.0 - Manual 119

http://www.gnu.org/software/glpk

Usage of Gurobi parameters within the CMPL header:

%opt gurobi <option>[=<val>]

3.3.3.6 CPLEX

CPLEX is a part of the IBM ILOG CPLEX optimisation Studio and includes simplex, barrier, and mixed integer
optimizers. "IBM ILOG CPLEX optimisation Studio provides the fastest way to build efficient optimisation
models and state-of-the-art applications for the full range of planning and scheduling problems. With its in-
tegrated development environment, descriptive modelling language and built-in tools, it supports the entire
model development process." (IBM ILOG CPLEX optimisation Studio manual)

If CPLEX is installed on the same computer as CMPL then CPLEX can be connected to CMPL by changing the
entry CPLEX in the file <CMPLHOME>/bin/cmpl.opt.
If this entry is correct then you can execute CPLEX directly by using the command

cmpl <problem>.cmpl -solver cplex

or by the CMPL header flag:

%solver cplex

All CPLEX parameters described in the CPLEX manual (Parameters of CPLEX — Parameters Reference
Manual) can be used in the CMPL header. Usage CPLEX parameters within the CMPL header:

$opt cplex <option>[=<val>]

You have to use the parameters for the Interactive Optimizer. The names of sub-parameters of hierarchical
parameters are to be separated by slashes.

3.3.3.7 Other solvers

Since CMPL transforms a CMPL model into an MPS or a Free-MPS, the model can be solved using most free
or commercial solvers. To create MPS or a Free-MPS files please use the following commands:

cmpl <problemname>.cmpl <-m|-fm> <problemname>.mps #MPS export

CMPL 2.1.0 - Manual 120

3.4 Coliop

Coliop is an IDE (Integrated Development Environment) for CMPL . Coliop is an open-source project licensed
under GPL. It is written in C++ and is as an integral part of the CMPL distribution available for most of the
relevant operating systems (OS X, Linux and Windows). Coliop can be started by clicking the Coliop symbol
in the CMPL folder (not in CMPLHOME /bin).

The first working step is to create or to open a CMPL model.

ledmix IBE2D Q& & b
Problem Output Solution

par:
NUTR :
FOOD :

set("A","B1", "B2", "C");
set("BEEF", "CHK", "FISH", "HAM", "MCH", "MTL", "SPG", "TUR");

#cost per package
costs[FOOD] := (3.19, 2.59, 2.29, 2.89, 1.89, 1.99, 1.99, 2.49);
#provision of the daily requirements for vitamins in percentages
vitamin[NUTR, FOOD] := ((60, 8, 8, 40, 15, 70, 25, 60) ,

(20, o, 10, 40, 35, 30, 50, 20) ,

(10, 20, 15, 35, 15, 15, 25, 15),

(15, 20, 10, 10, 15, 15, 15, 10)

bH

#weekly vitamin requirements
vitMin[NUTR]:= (700,700,700,700);

x[FOOD]: integer[2..10];
cost: costsAT * x->min;

minimum vitamin restriction
vit: vitamin * x >= vitMin;

If the CMPL model imports an CmplData file by using the Cmpl header entry %data or the import of another
CMPL file by using $include then a list of the involved files are shown right of the CMPL model. A user can
switch between the files by clicking on the file names in this list. If a file does not exists then CMPL suggests
to create the file.

CMPL 2.1.0 - Manual 121

[N Coliop - diet-data.cmpl

lgdm X LEB2D Q8] % b

Problem Output Solution

%data diet-data.cdat : FOOD set, NUTR set, costs[FOOD], vitamin[NUTR,FOOD], vitMin[NUTR] diet-data.cmpl
diet-data.cdat
var:
x[FOOD]: integer[2..10];
obj:
cost: costsAT * x -> min;
con
minimum vitamin restriction
vit: vitamin * x >= vitMin;
[XON) Coliop - diet-data.cmpl

lgEm EX1EB2D> Q8 » b

Problem Output | Solution

%NUTR set < A B1 B2 C >
%FOOD set < BEEF CHK FISH HAM MCH MTL SPG TUR >

#cost per package
%costs[FOOD] < 3.19 2.59 2.29 2.89 1.89 1.99 1.99 2.49 >

#provision of the daily requirements for vitamins in percentages
%vitamin[NUTR,FOOD] < 60 8 8 40 15 70 25 60

20 @ 10 40 35 30 50 20

10 20 15 35 15 15 25 15

15 20 10 10 15 15 15 10

>

#weekly vitamin requirements
%vitMin[NUTR] < 700 700 700 700 >

CMPL 2.1.0 - Manual 122

diet-data.cmpl
diet-data.cdat

The model can be solved by clicking the button <Solve> in the toolbar or by choosing the menu entry <Ac-
tion—Solve>. If the model is feasible and a solution is found the solution appears in the tab <Solution>.

[] [] Coliop - diet-data.cmpl
N2 e 8. 19 B @ @ =« %
UeEdm o LB Q8 = P
Problem | Output m

Problem diet-data.cmpl

Nr. of variables 8

Nr. of constraints 4

Objective name cost

Solver name CBC

Display variables (all)
Display constraints (all)

Objective status optimal

Objective value 101.14 (min!)

Variables

Name Type Activity Lower bound Upper bound Marginal
X[BEEF] I 2 2 10 -
x[CHK] I 8 2 10 -
X[FISH] I 2 2 10 -
Xx[HAM] I 2 2 10 -
x[MCH] I 10 2 10 -
x[MTL] I 10 2 10 -
x[SPG] I 10 2 10 -
x[TUR] I 2 2 10 -
Constraints

Name Type Activity Lower bound Upper bound Marginal
vit[A] G 1500 700 inf -
vit[B1] G 1330 700 inf -

It is possible to obtain the output of the invoked solver and CMPL's output in the tab <Output>.

lgdm B2 88 & PO

Problem Output Solution

o

CMPL version: 2.0.0 (beta)
Authors: Thomas Schleiff, Mike Steglich
Distributed under the GPLv3

CMPL: Interpreting Cmpl code
CMPL: Writing CmplMessages to file > diet-data.cmsg

CMPL: Writing model instance to Free-MPS file > /var/tmp/tmp.@.y4sFg2.mps
CMPL: Solving instance using CBC
/Applications/Cmpl2/bin/Coliop.app/Contents/Mac0S/../../../../bin/../Thirdparty/CBC/

Welcome to the CBC MILP Solver
Version: devel
Build Date: Feb 26 2021

command line - /Applications/Cmpl2/bin/Coliop.app/Contents/Mac0S/../../../../bin/../Thirdparty/CBC/_cbc /var/tmp/tmp.
0.y4sFg2.mps min solve gsolu /var/tmp/tmp.@.y4sFg2.sol (default strategy 1)

At line 2 NAME diet-data

At line 5 ROWS

At 1line 11 COLUMNS

At line 37 RHS

At 1line 4@ BOUNDS

At 1line 57 ENDATA

Problem diet-data has 4 rows, 8 columns and 31 elements

Coin@@@8I diet-data read with @ errors

Continuous objective value is 101.013 - 0.00 seconds

Cgl@oo4I processed model has 4 rows, 8 columns (8 integer (@ of which binary)) and 31 elements

CMPL 2.1.0 - Manual 123

If a syntax error occurs then a user can analyse it by clicking on the error message in the CMPL message list
below the CMPL model. The position in the CMPL model that occurs the error is shown automatically.

LgEBm X iB2D> 88 % b
Problem Output Solution

%data diet-data.cdat : FOOD set, NUTR set, costs[FOOD], vitamin[NUTR,FOOD], vitMin[NUTR] diet-data.cmpl
diet-data.cdat

something stupid
x[FOOD]: integer[2..10];

obj:
cost: costsAT * x -> min;
con:

minimum vitamin restriction
vit: vitamin * x >= vitMin;

Messages

cmpl finished with errors
Double-click an error message to access it in your code.

error in file <diet-data.cmpl> at line 5 : symbol 'something' is not defined

error in file <diet-data.cmpl> at line 5 : symbol 'stupid' is not defined

error in file <diet-data.cmpl> at line 5 : illegal expression, maybe missing operation sign
error in file <diet-data.cmpl> at line 6 : syntax error, unexpected symbol, expecting ";"
error in file <diet-data.cmpl> at line 9 : symbol 'x' is not defined

Avmnan s £31 A cAiad Aaba ~cmnls Ak T5ma 12 0 cuamlhal TU! S a Al AaLinad

3.5 CMPLServer

The CMPLServer is an XML-RPC-based web service for distributed and grid optimisation. XML-RPC provides
XML based procedures for Remote Procedure Calls (RPC), which are transmitted between a client and a
server via HTTP. (St. Laurent et al. 2001, p. 1.) XML-RPC has been chosen since this it is less resource con-
suming than other protocols like SOAP or REST due to its simpler functionalities.

CMPL 2.1.0 - Manual 124

A CMPLServer can be used in a single server mode or in a grid mode:

Single server mode Grid mode

=] | model
[< results > a "J

.
o> A ‘:\
\QQ‘ \ 35

Yo, J

S‘M“Er -

. [\;\\
o/ ey
&/ g\
| model > '
—— ¢ s -

Both modes can be understood as distributed systems “in which hardware and software components located
at networks computers communicate and coordinate their actions only by passing messages”. (Coulouris et
al, 2012, p. 17) Distributed optimisation is in this meaning interpretable as a distributed system that can be
used for solving optimisation problems. (cf. Kshemkalyani & Singhal, 2008, p. 1; Fourer et.al., 2010)

CMPL provides four XML-based file formats for the communication between a CMPLServer and its clients in
both modes (CmpliInstance, CmplSolutions, CmplMessages). A CmplInstance file contains an op-
timisation problem formulated in CMPL, the corresponding sets and parameters in the cmp1Data file format
as well all CMPL and solver options that belong to the CMPL model. If the model is feasible and a solution is
found then a CmplSolutions file contains the solution(s) and the status of the invoked solver. If the
model is not feasible then only the solver’s status and the solver messages are given in the solution file. The
CmplMessages file is intended to provide the CMPL status and (if existing) the CMPL messages.

In the single server mode only one CMPLServer that can be accessed synchronously or asynchronously by
the clients exists in the network. A model can be solved synchronously by executing the CMPL binary with
the command line argument -url <url> or by running a pyCMPL or jCMPL programme by using the
methods Cmpl.connect (url) for connecting the server and Cmpl.solve () for solving the model re-
motely.! The client sends the model to the CMPLServer and then waits for the results. If the model is feas-
ible and an optimal solution is found the solution(s) can be received. If the model contains syntax or other
errors or if the model is not feasible the CMPL and solver messages can be obtained. Whereby in the syn-
chronous mode the client has to wait after sending the problem for the results and Messages in one process,
a model can also be solved asynchronously with pyCMPL and jCMPL by using the methods Cmpl.send (),
Cmpl.knock () and Cmpl.retrieve ()in several steps. After sending the model to the CMPLServer via
Cmpl.send ()the server status can be obtained with Cmp1l.knock (). If the CMPLServer is finished the
solution, the CMPL and the solver states and messages can be received by Cmpl.retrieve (). Itis reas-
onable to use the single server mode if a large model is formulated on a thin client in order to solve it re-
motely on the CMPLServer that is installed on a high performance system.

All these distributed optimisation procedures require a one-to-one connection between a CMPLServer and
the client. The grid mode extends this approach by coupling CMPLServers from several locations and at least

1 Please take a look at the pyCMPL and jCMPL descriptions in chapter 4.

CMPL 2.1.0 - Manual 125

one coordinating CMPLGridScheduler to one “virtual CMPLServer” as a grid computing system that can be
defined “as a system that coordinates distributed resources using standard, open, general-purpose protocols
and interfaces to deliver non-trivial qualities of service.” (Forster & Kesselmann 2003, pos. 722) For the cli-
ent there does not appear any difference whether there is a connection to a single CMPLServer or to a CM-
PLGrid. The client's model is to be connected with the same functionalities as for a single CMPLServer to a
CMPLGridScheduler which is responsible for the load balancing within the CMPLGrid and the assignment of
the model to one of the connected CMPLServers. After this step the client is automatically connected to the
chosen CMPLServer and the model can be solved synchronously or asynchronously. A CMPLGrid should be
used for handling a huge amount of large scale optimisation problems. An example can be a simulation in
which each agent has to solve its own optimisation problem at several times. An additional example for such
a CMPLGrid application is an optimisation web portal that provides a huge amount of optimisation problems.

Both modes can be controlled by the cmplServer script that can be started in the Cmplshell.

cmplServer <command> [<port>] [-showLog]
command:
-start starts as single CMPLServer
-startInGrid starts CMPLServer and connects to CMPLGrid
-startScheduler starts as CMPLGridScheduler
-stop stops CMPLServer or CMPLGridScheduler
-status returns the status of the CMPLServer or CMPLGridScheduler
port defines CMPLServer's or CMPLGridScheduler's port
-showLog shows the CMPLServer or CMPLGridScheduler log file

3.5.1 Single server mode

The first step to establish the single server mode is to start the CMPLServer by typing the command:

cmplServer -start [<port>]

Optionally a port can be specified as second argument. The behaviour of a CMPLServer can be influenced by
editing the file cmplServer.opt thatis located on Mac OS X in /Applications/Cmpl/cmplServer, On
Linux in /usr/share/Cmpl/cmplServer and on Windows in c:\program files|[(x86)]\Cmpl\
cmplServer. The example below shows the default values in this file.

cmplServerPort = 8008
maxProblems = 4
maxInactivityTime = 43200

servicelIntervall = 30

solvers = highs scip

The default port of the CMPLServer can be specified with the parameter port. The parameter maxProb-
lems defines how many problems can be carried out simultaneously. If more problems than maxProblems
are connected with the CMPLServer the supernumerary problems are assigned to the problem waiting queue
and automatically started if a running problem is finished or cancelled. If a problem is longer inactive than
defined by the parameter maxInactivityTime it is cancelled and deleted automatically by the CM-
PLServer. This procedure as well as the problem waiting queue handling are performed by a service thread

CMPL 2.1.0 - Manual 126

that works perpetual after a couple of seconds defined by the parameter serviceIntervall. With the
parameter solvers it can be specified which solvers in the set of the installed solvers can be provided by
the CMPLServer.

start server

" H ‘ cmplServer -start [<port>] [-showLog]

cmplServer.opt

cmplServerPort = 8008
maxProblems = 4
maxInactivityTime = 43200
servicelntervall = 30
solvers = highs scip

A running CMPLServer can be accessed by the CMPL binary or via CMPL's Python and Java APIs that contain
CMPLServer clients. One can execute a CMPL model remotely on a CMPLServer by using the command line
argument -cmplUrl.

cmpl <problem>.cmpl -url http://<ip-adress-or-Domain>:<port>

This command executes the problem on the CMPLServer synchronously. That means CMPL waits right after
sending the problem for the results and messages in one process.

It is also possible to run a Cmpl Problem asynchronously on a CMPLServer. In a first step, the problem is
sent to the server by coupling the -cmp1Ur1 argument with the -send command line argument.

cmpl <problem>.cmpl -url http://<ip-adress-or-Domain>:<port> -send

Afterwards, the status of the problem can be obtained by using the command line argument -knock.

cmpl <problem>.cmpl -knock

The results can be retrieved by using the command line argument -retrieve after finishing the problem
on the CMPLServer.

cmpl <problem>.cmpl -retrieve

It is also possible to cancel the problem on the CmplServer if necessary by using the command line argu-
ment -cancel.

cmpl <problem>.cmpl -cancel

The status of a problem which is sent to a CMPLServer but not retrieved is saved automatically in a dump
file in the temp folder. Therefore the computer could be switched off after sending the problem and later
switched on to retrieve it.

In pyCMPL and jCMPL a CMPLServer can be connected by using the method Cmpl.connect (). Executing a
model can be done synchronously by executing the method Cmp1.solve () or asynchronously by using the

CMPL 2.1.0 - Manual 127

methods Cmpl.send(), Cmpl.knock() and Cmpl.retrieve (). These main functionalities are illus-
trated in the following picture.

connect client selected states
—— connect CMPLSERVER_OK
’ | problemName, solver > CMPLSERVER_ERROR
L~ < status, jobld | CMPLSERVER_BUSY
N — : CMPLSERVER_CLEANED
solve PROBLEM_RUNNING

PROBLEM_FINISHED
PROBLEM_CANCELED
PROBLEM_NOTRUNNING

"’i’f—"—: send (if status==CMPLSERVER_OK)
’ i | Cmplinstance including jobld

\/:’ < status |

m——] knock (until status==PROBLEM_FINISHED)

| jobid

_/-; < status |

— retrieve (if status==PROBLEM_FINISHED)
[jobld

_—e—— < CmplSolutions, CmplMessages |

In the first step the client connects the CMPLServer, hands over its problem name and the solver with which
the problem is to be solved. Then the client receives the status of the CMPLServer and if the status is cM-
PLSERVER OK also the jobId is also sent. The status is CMPLSERVER ERROR if the demanded solver is
not supported or a CMPLServer occurs.

The synchronous method Cmpl.solve () is a bundle of the asynchronous methods Cmpl.send (), Cm-
pl.knock () and Cmpl.retrieve ().

Cmpl.send() sends a CmplInstance XML string that contains all relevant information about a CMPL
model including the job1d, the CMPL and the solver options as well as the model itself and its data files to
the CMPLServer. If the number of running problems including the model sent is greater than maxProblems
the model is moved to the problem waiting queue and the CMPLServer returns the status
CMPLSERVER BUSY. If not the CMPLServer starts the solving process automatically if the CmplInstance

string is completely received and the model and data files are written to the hard disc. In this case the status
is set to PROBLEM RUNNING.

A CMPLServer uses the home path of the user who is running it and saves all relevant data in $SHOME /Cm-
plServer (Mac and Linux) or $HOMEPATH%\CmplServer (Windows). The activities of the server can be
obtained in the file cmplServer.log. Each problem is stored in an own folder specified by the job1d
which is deleted automatically after disconnecting the problem.

In the next step the client asks the CMPLServer whether solving the problem is finished or not via cm-
pl.knock () whereby the job1d identifies the problem and the CMPLServer returns the current status. The
client has to knock until the status is PROBLEM RUNNING (Or CMPLSERVER ERROR). If the status is cM-

CMPL 2.1.0 - Manual 128

PLSERVER BUSY the problem is put into the problem waiting queue until an empty solving slot is available
or the maximum queuing time (defined with the CMPL option -maxQueuingTime or by default 300
seconds) is reached. The procedure then stops automatically.

If the status is equal to PROBLEM RUNNING the solution, the CMPL and the solver messages and if reques-
ted some statistics can be received by using Cmpl.retrieve (). The client sends its job1d and then re-
trieves the CmplSolution, CmplMesages and CmplInfo XML strings. If Cmpl.knock() returns
CMPLSERVER_ERROR the process is stopped.

The CMPLServer can be stopped by typing the command:

cmplServer -stop [<port>]

3.5.2 Grid mode

A CMPLGrid consists at least of one CMPLGridScheduler and usually a couple of CMPLServers that are con-
nected to at least one scheduler. A CMPLGridScheduler is the gateway to the CMPLGrid for the clients and
has to coordinate the traffic in the grid, that means it is responsible for the load balancing within the CM-
PLGrid and the assignment of the models to the connected CMPLServers. After receiving a model from a CM-
PLGridScheduler a CMPLServer has to communicate directly with the client to receive the model, to solve it
and to send (if the problem is feasible) the solution(s), the CMPL and solver messages and if requested
some information to the client. After these steps the client is disconnected automatically and the CMPLServ-
ers is waiting for the next problem from a CMPLGridScheduler.

The first step to start a CMPLGrid is to execute one or more CMPLGridScheduler by typing the command:

cmplServer -startScheduler [<port>]

As for the CMPLServers the parameter of a CMPLGridScheduler can be edited in the file cmplServer. opt.

start CMPLGridScheduler(s)

___’___—— ‘ cmplServer -startScheduler [<port>]

cmplServer.opt
cmplServerPort = 8008
maxServerTries =3
schedulerServicelntervall = 0.1

The relevant parameters in cmplServer.opt for a CMPLGridScheduler with there default values are shown
below.

cmplServerPort = 8008
maxServerTries = 3

schedulerServiceIntervall = 0.1

The default port of the CMPLGridScheduler can be specified by the parameter port. If one wants to run a
CMPLServer on the same computer as the CMPLGridScheduler then the server needs to be started with a dif-

CMPL 2.1.0 - Manual 129

ferent port via command line argument. Since the CMPLGridScheduler has to call functions provided by con-
nected CMPLServers and additionally has to ensure a high availability and failover, the CMPLGridScheduler
repeats failed CMPLServer calls whereby the number of tries are specified by the parameter maxServer-
Tries. There is also a service thread that works permanently after a couple of seconds defined by the
parameter servicelIntervall. Because this service thread is among others responsible for the problem
waiting queue handling on the CMPLGridScheduler it makes sense to choose very short service intervals.

After running one or more CMPLGridSchedulers the involved CMPLServers can be started by typing the com-
mand:

cmplServer -startInGrid [<port>]

start and connect CMPLServer(s) cmplServer.opt

maxServerTries = 3
performancelndex = 1
cmplGridScheduler = http://10.0.1.52:8008 4

_.—’—-—’:’/—:1 cmplServer —startIinGrid [<port>]

In addition to the described parameters in cmplServer.opt the following parameters are necessary for
running a CMPLServer in a CMPLGrid.

maxServerTries = 3
performancelIndex = 1
cmplGridScheduler = http://10.0.1.52:8008 4

A CMPLServer in a CMPLGrid also has to call functions provided by a CMPLGridScheduler. Due to maximum
availability and failover the maximum number of tries of failed CMPLGridScheduler calls are to be specified
with the parameter maxServerTries. Assuming heterogeneous hardware for the CMPLServers in a CM-
PLGrid it is necessary for a reasonable load balancing to identify several performance levels of the invoked
CMPLServers. This can be done by the parameter performanceIndex that influences the load balancing
function directly. The involved operators of the CMPLServers and the CMPLGridScheduler(s) should specify
standardised performance classes used within the entire CMPLGrid with the simple rule: the higher the per-
formance class, the higher the performanceIndex. The parameter cmplGridScheduler is intended to
specify the CMPLGridScheduler to which the CMPLServer is to be connected. The first argument is the URL
of the scheduler. The second parameter defines the maximum number of problems that the CMPLServer
provides to this CMPLGridScheduler. If a CMPLServer should be connected to more than one scheduler one
entry per CMPLGridScheduler is required. In the following example the CMPLServer will be connected to two
CMPLGridSchedulers with maximally two problems per scheduler.

CMPL 2.1.0 - Manual 130

cmplGridScheduler = http://10.0.1.52:8008 2
http://10.0.1.53:8008 2

cmplGridScheduler

While connecting the CMPLGridScheduler the CMPLServer sends its port, the maximum number of provided
problems and its performance index. It receives the status of the CMPLGridScheduler and a serverId. Pos-
sible states for connecting a CMPLServer are CMPLGRID SCHEDULER OK Or CMPLGRID SCHEDULER ER-
ROR.

Now a client can connect the CMPLGrid in the same way as a client connects a single CMPLServer either by
using the CMPL binary

cmpl <problem>.cmpl -url http://<ip-adress-or-Domain>:<port>

or in pyCmpl and jCMPL programmes through the method Cmp1.connect ().

The client sends automatically the name of the problem and the name of the solver with which the problem
should be solved to the CMPLGridScheduler.

connect client and load balancing

[

L brogj— e 7
\::“"‘_.--\e’"/vam\ e
7 r ‘\ -

L‘\;

argInax{ffgzzfzgéﬁgﬂfi}-petﬁnvnancelndan

sEServers

maxProblems,

set of CMPLServers that
provide the demanded solver

If the name of the solver is unknown or this solver is not available in the CMPLGrid the CMPLGridScheduler
returns CMPLSERVER ERROR. In case the problem waiting queue is not empty the problem is then as-
signed to the problem waiting queue and the status is CMPLGRID SCHEDULER BUSY.

Otherwise the CMPLGridScheduler returns the status CMPLGRID SCHEDULER OK, the serverUrl of the
CMPLServer on which the problem will be solved and the job1d of the problem. This CMPLServer is determ-
ined on the basis of the load balancing function that is shown in the picture below. Per server that is provid-
ing the solver the current capacity factor is to be calculated by the relationship between the current empty
problems of this server and the maximum number of provided problems. The number of empty problems is
controlled by the CMPLGridScheduler with a lower bound of zero and an upper bound equal to the maximum
number of provided problems. This parameter is decreased if the CMPLServer is taking over a problem and it
is increased when the CMPLServer has finished the problem or the problem is cancelled. The idea is to send
problems tendentiously to those CMPLServer with the highest empty capacity. To include the different per-
formance levels of the invoked CMPLServers in the load balancing decision, the current capacity factor is to

CMPL 2.1.0 - Manual 131

be multiplied by the performance index. The result is the load balancing factor and the CMPLServer with the
highest load balancing factor is assigned to the client to solve the problem. This CMPLServer then gets the
jobId of the CMPL problem by the CMPLGridServer in order to take over all relevant processes to solve this
problem. Afterwards the client is automatically connected to this CMPLServer.

send (if status==CMPGRIDSCHEDULER_OK
Cmplinstance including jobld

status |

knock (until status==PROBLEM_FINISHED)
jobld

status

retrieve (if status==PROBLEM_FINISHED)
| jobld

< CmplSolutions, CmplMessages |

The problem waiting queue handling is organised by the CMPLGrid Scheduler service thread that assigns the
waiting problems automatically to CMPLServers by using the same functionalities as described above. The
waiting clients either ask automatically in the synchronous mode or manually in the asynchronous mode
both through Cmp1 . knock () until the received status is not equal to CMPLGRID SCHEDULER BUSY.

The next steps to solve the problem synchronously or asynchronously on the CMPLServer are similar to the
procedures in the single server mode as shown in the following figure.

The methods Cmpl.send (), Cmpl.knock () and Cmpl.retrieve () are used to send the problem to
the CMPLServer, to knock for the current status, to retrieve the solution and the CMPL and the solver mes-
sages and if requested some statistics. The main differences to the single server mode are that the CM-
PLServer calls the CMPLServerGrid to add an empty problem slot after finishing solving the problem and that
the client is disconnected automatically from the CMPLServer after retrieving the solution, messages and
statistics.

The CmplGridScheduler and the CmplServers can be stopped by typing the command:

cmplServer -stop [<port>]

CMPL 2.1.0 - Manual 132

3.5.3 Reliability and failover

A distributed optimisation system or a grid optimisation system is usually implemented in a heterogeneous
environment. The network notes can be installed on different hardware as well as on different operating sys-
tems. This fact could cause some disturbances within the optimisation network that should be either
avoided or reduced in their negative impact of the optimisation processes.

Beside ensuring a good performance, maximum reliability and failover are therefore important targets of the
CMPLServer and the CMPLGrid implementations. They are ensured by:

(a) the problem queue handling on the CMPLGridScheduler and the CMPLServer,
(b) multiple executions of failed server calls and

(c) re-connections of problems to the CMPLGridScheduler if an assigned CMPLServer fails.

(a) Problem queue handling

If a problem is connected to a CMPLServer or a CMPLGridScheduler and the number of running problems in-
cluding the model sent is greater than maxProblems, it neither makes sense to cancel the problem nor to
interrupt the solving process. Especially in case of an iterating solving process with a couple of depending
problems it is the better way to refer the supernumerary problems automatically to the problem waiting
queue.

For the single server mode the problem queue handling is organised by the CMPLServer whilst in the grid
mode the CMPLGridScheduler(s) are responsible for it. In both modes a problem stored in the problem wait-
ing queue has to wait until an empty solving slot is available or the maximum queuing time is reached.

In the single server mode the number of problems that can be executed simultaneously on the particular
CMPLServer are defined by the parameter maxproblems in cmplServer.opt. With this parameter it
should be avoided to overwhelm the server and to avoid the super-proportional effort for managing a huge
amount of parallel problems. The first empty solving slot that appears when a running problem is finished or
cancelled, is taking over a waiting problem by using the FIFO approach.

The number of simultaneously running problems in a CMPLGrid is defined by the sum over all connected CM-
PLServer of the maximum number of problems provided by the servers. This parameter is to be defined per
CMPLServer in cmplServer.opt as second argument in the entry cmplGridScheduler = <url>
<maxProblems>. The CMPLGridScheduler counts the number of running problems per CMPLServer in rela-
tion to its maximum number of provided problems. If it is not possible to find a connected CMPLServer with
an empty solving slot then the problem is put to the problem waiting queue. In contrast to the single server
mode the problem which has been waiting longest is not executed by the first appearing free CMPLServer
but it is organised by the described load balancing function over the set of CMPLServers that stated an
empty solving slot during two iterations of the CMPLGridScheduler service thread.

The client’s maximum queuing time in seconds can be specified with the CMPL command line argument -
maxTime <sec>. This argument can also be set as CMPL header entry $maxTime <sec> or in pyCMPL
and jCMPL with the method Cmpl.setMaxServerQueuingTime (<sec>”. The default value is 300
seconds.

CMPL 2.1.0 - Manual 133

(b) Multiple executions of failed server calls

To avoid that a single execution of a server method, which fails due to network problems like socket errors
or others, cancels the entire process, all failed server calls can be executed again several times. The max-
imum number of executions of failed server calls can be specified for the clients by the CMPL command line
argument -maxTries <tries>. It can also be used in a CMPL header entry $maxTries <tries> oOr
in pyCMPL and jCMPL by using Cmpl.setMaxServerTries (<tries>). The default value is 10. The
number of maximum executions of failed server calls in the communication between the CMPLGridScheduler
and CMPLServers is defined in cmplServer.opt with the entry maxServerTries = <tries>.

An exemplary and simplified implementation of this behaviour is shown in the pseudo code listing below:

1 serverTries=0

2 while True do

3 try

4 callServerMethod ()

5 except

6 serverTries+=1

7 if serverTries>maxServerTries then
8 status=CMPLSERVER ERROR

9 raise CmplException("calling CmplServer function .. failed")
10 end if

11 end try

12 break

13 end while

In a first step the variable serverTries is assigned zero. The call of the server method (line 4) is imbed-
ded in an infinite loop (lines 2-13) and in a try-except-block for the exception handling (lines 3-11). If no
exception occurs then the loop is finished by the break command in line 12. Otherwise serverTries is in-
cremented by 1. If the maximum number is not exceeded (line 7) the server method is called again (line 4).
If serverTries is greater than maxServerTries then the class variable Cmpl.status is set to cM-
PLSERVER ERROR and a CmplException is raised that have to be handled in the code in which the list-
ing below is imbedded (lines 7-9).

(c) Re-connections of failed problems to the CMPLGridScheduler

Multiple server calls are mainly intended to prevent network problems. But it could be also possible that
other problems caused by CMPLServers connected to a CMPLGridScheduler (e.g. a failed execution of a
solver, file handling problems at a CMPLServer or the unpredictable shutdown of a CMPLServer) occur. The
idea to handle such problems is that if the assigned CMPLServer fails the particular problem is then recon-
nected to the CMPLGridScheduler and is taken over by another CMPLServer automatically.

The following pseudo code listing describes a simplified implementation of Cmp1l.solve () only for the grid
mode to illustrate this approach:

CMPL 2.1.0 - Manual 134

1 serverTries=0

2 while True do

3 try

4 if status==CMPLSERVER ERROR then

5 CmplGridScheduler. connect ()

6 end if

9

8 if status==CMPLGRID SCHEDULER BUSY then

9 while status<>CMPLGRID SCHEDULER OK do

10 CmplGridScheduler.knock ()

11 if waitingTime () >=maxQueuingTime then
12 raise CmplException("max. queuing time is exceeded.")
13 end if

14 end while

15 end if

16 connectedToServer=True

17

18 CmplServer.send ()

19

20 while status<>PROBLEM FINISHED do

21 CmplServer.knock ()

22 end while

23

24 CmplServer.retrieve ()

25 break

26

27 except CmplException

28 serverTries+=1

29 if status==CMPL_ERROR and connectedToServer==True then
30 CmplGridScheduler.cmplServerFailed ()

31 end

32 if serverTries>maxServerTries or status==CMPLGRID SCHEDULER BUSY then
33 ExceptionHandling ()

34 exit

35 end if

36 end try

37 end while

As in the listing of the multiple server calls the variable serverTries is assigned zero (line 1). The entire
method is also imbedded in an infinite loop (lines 2-37) and the exception handling is organised as try-ex-
cept-block (lines 3-36).

Before Cmpl.solve () is called the client has to execute Cmpl.connect () successfully. Therefore the
class variable Cmpl.status has to be unequal to CMPLSERVER ERROR and an additional Cmpl.con-
nect () is not necessary in the first run of Cmpl.solve () (lines 4-6).1t is possible that the entire CM-
PLGrid is busy, the status equals CMPLGRID SCHEDULER BUSY and the problem is moved to the CM-

CMPL 2.1.0 - Manual 135

PLGridScheduler problem waiting queue (line 8). In this case the problem has to wait for the next empty
solving slot via Cmp1 . knock () (line 10) until the CMPLGridScheduler returns the status CMPLGRIDSCHED-
ULER OK (line 9) or the waiting time exceeds the maximum queuing time and a CmplException is raised
(lines 11-13).

After this loop the problem is automatically connected to a CMPLServer within the CMPLGrid. The class vari-
able Cmpl.connectedToServer is assigned True (line 16) and the problem is sent to this server
through Cmpl.send () (line 18). The problem then has to wait until the problem status is PROBLEM FIN-
1SHED (lines 20-22). As soon as the problem is finished, the solution(s), the CMPL and the solver messages
as well as (if requested) some statistics can be retrieved via Cmpl.retrieve () (line 24). If no CmplEx-
ception or another exception appeared during this procedures the infinite loop is left by the break com-
mand in line 25.

Otherwise the CmplException or other exceptions have to be handled in the except block in the lines 27-
36. The first step is to increase the number of failed server call tries (line 28). If while executing Cmpl. -
connect (), Cmpl.send (), Cmpl.knock () or Cmpl.retrieve () an exception is raised and the prob-
lem is connected to a CMPLServer then the client calls the CMPLGridScheduler method cmplServer-
Failed () in order to report that this CMPLServer failed and to set the status of this server to inactive on
the CMPLGridScheduler (line 30). This CMPLServer is then excluded from the CMPLGridScheduler load balan-
cing until CMPLGridScheduler's service thread recognises that this CMPLServer is able to take over problems
again.

If the number of failed server calls exceeds the maximum number of tries or the status is
CMPLGRID SCHEDULER BUSY because the maximum queuing time is exceeded (line 32), the entire pro-
cedure stops by doing the necessary exception handling and by exiting the programme (lines 33-34).

Otherwise the problem has to pass the loop again. That means that the problem is reconnected to the CM-
PLGrid via CMPLGridScheduler.connect () (lines 4-6) and the solving process starts again.

3.6 pyCMPL

pyCMPL is the CMPL API for Python3. The main idea of this API is to define sets and parameters within the
user application, to start and control the solving process and to read the solution(s) into the application if
the problem is feasible. All variables, objective functions and constraints are defined in CMPL. These func-
tionalities can be used with a local CMPL installation or a CMPLServer.

To execute a pyCmpl script, it is necessary to start the cmp1shel1 script in the CMPL folder, which sets the
CMPL environment (PATH, environment variables and library dependencies) and starts a command line win-
dow in which a pyCmpl script can be executed with the command python <problemname>.py. The
CMPL package contains a Python environment with all necessary binaries, modules and packages. Other
modules and packages can be added via the PYTHONPATH environment variable or installed directly in the
Python environment supplied.

CMPL 2.1.0 - Manual 136

3.7 jCMPL

jCMPL is the CMPL API for Java. The main idea of this API is similar to pyCMPL to define sets and paramet-
ers within the user application, to start and control the solving process and to read the solution(s) into the
application if the problem is feasible. All variables, objective functions and constraints are defined in CMPL.

These functionalities can be used with a local CMPL installation or a CMPLServer.

To use the jCMPL functionalities a Java programme has to import jCMPL by import jCMPL.*; and to link
your application against jCmpl.jar and the following jar files, that you can find in the CMPL application
folder in ycmpl/1ib (Windows and Linux) or on GitHub (https://github.com/MikeSteglich/iCmpl).

Additionally, it is necessary to specify an environment variable cMPLHOME that contains the full path to the
CMPL folder. This can be done by executing the cmp1shell script in the Cmpl folder and to run the Java
program in this environment.

3.8 Input and output file formats

3.8.1 Overview

As shown in the picture below, CMPL uses several ASCII files for the communication with the user, solvers
and CMPLServer.

User ‘

results (stdio, ASCII, CmplSolutions, CSV),

CMPL, CmplData CmplMessages, matrix, statistics

CMPL |

Free-MPS, solver specific Cmplinstance CmplSolutions,
solver specific results CmplMessages,
parameters Cmplinfo

HiGHS | SCIP | GLPK | CBC | Gurobi | Cplex CMPLServer |

Free-MPS, solver specific

solver specific results

parameters

HIGHS | SCIP | GLPK | CBC | Gurobi | Cplex |

CMPL 2.1.0 - Manual 137

https://github.com/MikeSteglich/jCmpl

CMPL input file for CMPL - syntax as described above

CmplData data file format for CMPL - syntax as described above

Free-MPS output file for the generated model in Free-MPS format

CmplInstance XML file that contains all relevant information about a CMPL model sent to a
CMPLServer

Result files solutions of a CMPL model can be obtained in the form of an ASCII, CSV or
CmplSolutions file

CmplSolutions solutions can be solved in CMPL's XML based solution file format

CmplMessages XML file that contains the status and messages of a CMPL model

To describe the several file types it is necessary to distinguish between the local and the remote mode.

In the local mode a CMPL model and (if existing) the corresponding CmplData files are parsed and translated
into a Free-MPS file (If no syntax or other error occur). If there are some errors in the CMPL model the
CMPL messages are shown automatically or can be saved in a CmplMessages file. The Free-MPS file is to-
gether with solver specific parameter handed over to the chosen solver that is executed directly by CMPL. If
the problem is feasible and an optimal solution is found CMPL reads the solution in form of the solver spe-
cific result format. A CMPL user can now obtain the standard solution report or can save the solution(s) as
ASCII or CSV file or as CmplSolutions file. It is also possible to obtain the generated matrix and some statist-
ics on the screen or in a plain text file.

A user can also process his or her CMPL model remotely on a CMPLServer. In the first step CMPL writes
automatically all model relevant information (CMPL and CmplData files, CMPL and solver options) in a Cm-
plInstance file and sends it to the connected CMPLServer. After solving the model CMPL receives two XML-
based file formats (CmplSolutions, CmplMessages) and the user can obtain (if an optimal solution is found)
the standard solution report or can save the solution(s) and also can get the generated matrix and some
statistics. If the CMPL model contains errors then the user can retrieve the CMPL messages.

3.8.2 CMPL and CmplData

A CMPL file is an ASCII file that includes the user-defined CMPL code with a syntax as described in this
manual.

The example

1-x,+2 -x,+3-x; -» max!
S.t.

5.6 -:x,+7.7-x,+10.5 -x,<15
9.8 -x,+4.2 -x,+11.1 -x,<20
0<x,;n€1,2,3|

can be formulated with the CmplData file test.cdat

$n set <1..2>
$m set <1..3>

%c[m] < 15 18 22 >

CMPL 2.1.0 - Manual 138

$b[n] < 175 200 >
SA[n,m] < 5 10 15
10 5 10 >

and the CMPL file test.cmpl

$data test.cdat

var:
x[m]: real[O..];
obj:
profit: c¢”T * x[] -> max;
con:

res: A * x <= b;

3.8.3 Free-MPS

The Free-MPS-format is internally used for the communication between CMPL and all local installed solvers.

The Free-MPS format is an improved version of the MPS format. There is no standard for this format but it is
widely accepted. The structure of a Free-MPS file is the same as an MPS file. But most of the restricted MPS
format requirements are eliminated, e.g. there are no requirements for the position or length of a field. For
more information please visit the project website of the Ip_solve project. [http://Ipsolve.sourceforge.net]

The Free-MPS file for the given CMP example is generated as follows:

* CMPL - Free-MPS - Export
NAME test

* OBJNAME profit

* OBJSENSE MAX

ROWS

N profit

L res[1l]

L res[2]
COLUMNS

x[1] profit 15 res[1l] 5
x[1] res[2] 10

x[2] profit 18 res[1l] 10
x[2] res[2] 5

x[3] profit 22 res[l] 15
x[3] res([2] 10

RHS

RHS res[1l] 175 res[2] 200
BOUNDS

PL BOUND x[1]

PL BOUND x[2]

PL BOUND x[3]
ENDATA

3.8.4 CmplInstance

CmplInstance is an XML-based format that contains all relevant information about a CMPL model (CMPL and
CmplData files, CMPL and solver options) to be sent to a CMPLServer.

CMPL 2.1.0 - Manual 139

A CmplInstance file consists of three major sections. The <general> section contains the name of the
problem and the jobld that is received automatically during connecting the CMPLServer. The <options>
section consists of the CMPL and solver options that a user has specified on the command line. The <prob-
lemFiles> section is indented to store the CMPL file and all corresponding CmplData files. All CmplData
files no matter whether they are specified within the CMPL model or as command line argument are auto-
matically included in the CmplInstance file. To avoid some misinterpretation of some special characters while
reading the CmplInstance on the CMPLServer the content of the CMPL model and the CmplData files are
automatically unescaped by CMPL.

The XSD (XML Schema Definition) of CmplInstance is defined as follows:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema elementFormDefault="qualified"” xmlns:xs="http://www.w3.org, 2001/ XMLSchema">

<xs:element name="CmplInstance'>
<xs:complexType>
<XS:sequence>
<xs:element ref="general " minOccurs="1" maxOccurs="1" />
<xs:element ref="ogptions" minOccurs="0" maxOccurs="1"/>
<xs:element ref="problemfiles" minOccurs="1" maxOccurs="1"/>
</Xs:sequence>
<xs:attribute name="version"” type="xs:decimal " use="required"/>
</xs:complexType>

</xs:element>

<xs:element name="general ">
<xs:complexType>

<XS:sequence>
<xs:element name="name" type="xs:string"” minOccurs="1" maxOccurs="1"/>
<xs:element name="jobId" type="xs:string” minOccurs="1" maxOccurs="1"/>
<xs:element name="preComp"” type="xs:string” minOccurs="1" maxOccurs="1"/>
</Xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="options's
<xs:complexType>
<XS:sequence>
<xs:element name="opt" type="xs:string"” minOccurs="0" maxOccurs= "unbounded" />
</Xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="problemFiles">
<xs:complexType>
<XS:sequence>
<xs:element ref="file"” minOccurs="1" maxOccurs= "unbounded" />
</Xs:sequence>

</xs:complexType>

CMPL 2.1.0 - Manual 140

</xs:element>

<xs:element name="file'>
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string"™
<xs:attribute name="name" type="xs:string" use="required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

</xs:element>

</Xs:schema>

If the given example is run with cmpl test.cmpl -url http://127.0.0.1:8008 -solver scip
the Cmpllnstance file test.cinst is automatically created by CMPL, sent to the CmplServer and the
model is executed remotely on a CMPLServer.

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<CmplInstance version="2.0">

<general>

<name>test.cmpl</name>
<jobId>S127.0.0.1-2021-05-15-16-36-52-809667</jobId>
<preComp>yes</preComp>

</general>

<options>

<opt>-solver scip</opt>

</options>

<problemFiles>

<file name="test.cmpl" >

%data test.cdat

var:

x[m]: reallO..]1;
obj:

profit: c”T * x —-> max;
con:

res: A * x <= b;
</file>
<file name="test.cdat" >
%n set <1..2>
%m set <1..3>

o\

c[m] < 15 18 22 >
b[n] &1t; 175 200 >
A[n,m] < 5 10 15

10 5 10 >

o©

%

CMPL 2.1.0 - Manual 141

</file>
</problemFiles>
</CmplInstance>

3.8.5 ASCII or CSV result files

If the problem is feasible and an optimal solution is found a user can obtain this optimal solution in the form
of an ASCI or CSV file by using the command line arguments -solutionAscii [<file>] Or -solu-
tionCsv [<file>]. This files can additionally contain all integer feasible solutions if Cplex or Gurobi are
used and the the CMPL header option $display solutionPool is defined.

The ASCII result file test.sol for the given CMPL example is generated as follows:

Problem test.cmpl

Nr. of variables 3

Nr. of constraints 2

Objective name profit

Solver name SCIP

Display variables (all)

Display constraints (all)

Objective status optimal

Objective value 405.00 (max!)

Variables

Name Type Activity LowerBound UpperBound Marginal
x[1] C 15.00 0.00 inf 0.00
x[2] c 10.00 0.00 inf 0.00
x[3] c 0.00 0.00 inf -7.00
Constraints

Name Type Activity LowerBound UpperBound Marginal
res([1] L 175.00 -inf 175.00 1.40
res[2] L 200.00 -inf 200.00 0.80

The corresponding CSV result file test.csv is generated as follows:

CMPL csv export

Problem; test.cmpl

Nr. of variables;3

Nr. of constraints;2
Objective name;profit
Solver name;SCIP
Display variables; (all)

Display constraints; (all)

Objective status;optimal

Objective value;405.000000; (max!)

Variables

Name; Type;Activity; LowerBound; UpperBound;Marginal
%x[1]1;C;15.000000;0.000000;1inf;0.000000
x[2];C;10.000000;0.000000;inf;0.000000
x[3]1;C;0.000000;,0.000000;inf;-7.000000

CMPL 2.1.0 - Manual 142

Constraints

Name; Type;Activity; LowerBound; UpperBound;Marginal
res[1];L;175.000000;,-inf;175.000000;1.400000
res[2];L;200.000000;-1inf;200.000000;0.800000

3.8.6 CmplSolutions

CmplSolutions is an XML-based format for representing the general status and the solution(s) if the problem
is feasible and one or more solutions are found. A user can save it by using the command line argument -
solution [<File>]. Itis also internally used for receiving solution(s) from a CMPLServer.

As shown in the corresponding XSD below A CmplSolutions file contains a <general> block for general in-
formation about the solved problem and a <solutions> block for the results of all solutions found includ-
ing the variables and constraints.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http.://ww.w3.org /2001/XMLSchema” elementFormDefault="qualified"

<xs:element name="CmplSolutions">
<xs:complexType>
<XSs:sequence>
<xs:element ref="general " minOccurs="1" maxOccurs="1"/>
<xs:element ref="solution"” minOccurs="0" maxOccurs= "unbounded"/>
</Xs:sequence>
<xs:attribute name="version" use="required" type="xs:decimal "/>
</xs:complexType>

</xs:element>

<xs:element name="general ">
<xs:complexType>
<XSs:sequence>
<xs:element name="instanceName" type="xs:string” minOccurs="1" maxOccurs="1" />
<xs:element name="nrofVariables" type="xs:nonNegativelnteger"” minOccurs="1" maxOccurs="1"/>
<xs:element name="nrOfConstraints” type="xs:nonNegativelnteger" minOccurs="1" maxOccurs="1"
/>
<xs:element name="objectiveName" type="xs:string” minOccurs="1" maxOccurs="1" />
<xs:element name="objectiveSense"” type="xs:string"” minOccurs="1" maxOccurs="1" />
<xs:element name="nrOfSolutions” type="xs:nonNegativelnteger" minOccurs="1" maxOccurs="1"/>
<xs:element name="solverName" type="xs:string"” minOccurs="7" maxOccurs="1" />
<xs:element name="variablesDisplayOptions"” type="xs:string"” minOccurs="1" maxOccurs="1" />
<xs:element name="constraintsDisplayOptions" type="xs:string” minOccurs="1" maxOccurs="1"/>
</Xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="solution'>
<xs:complexType>

<Xs:sequence>

CMPL 2.1.0 - Manual 143

<xs:element ref="variables"” minOccurs="1" maxOccurs="1"/>
<xs:element ref="IinearConstraints” minOccurs="1" maxOccurs="1" />
</Xs:sequence>
<xs:attribute name="idx" use="required" type="xs:nonNegativelnteger"/>
<xs:attribute name="status"” use="required" type="xs:string"/>
<xs:attribute name="value"” use="required" type="xs:decimal "/>
</xs:complexType>

</xs:element>

<xs:element name="variables'>
<xs:complexType>
<XS:sequence>
<xs:element minOccurs="1" maxOccurs= "unbounded" ref="variable"/>
</Xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="IlinearConstraints'
<xs:complexType>
<XS:sequence>
<xs:element minOccurs="1" maxOccurs= "unbounded” ref="constraint"/>
</Xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="variable'>

<xs:complexType>
<xs:attribute name="idx" use="required"” type="xs:nonNegativelnteger"/>
<xs:attribute name="name" use="required" type="xs:string"/>
<xs:attribute name="type" use="required” type="varType"/>

<xs:attribute name="activity" use="required" type="xs:double"/>

<xs:attribute name="lowerBound" use="required" type="xs:double"/>
<xs:attribute name= "upperBound"” use="required"” type="xs:double"/>
<xs:attribute name="marginal” use="required" type="xs:double"/>

</xs:complexType>

</xs:element>

<xs:element name="constraint's

<xs:complexType>
<xs:attribute name="idx" use="required"” type="xs:nonNegativelnteger"/>
<xs:attribute name="name" use="required" type="xs:string"/>
<xs:attribute name="type" use="required” type="conType"/>

<xs:attribute name="activity" use="required" type="xs:double"/>

<xs:attribute name="lowerBound" use="required" type="xs:double"/>
<xs:attribute name= "upperBound"” use="required" type="xs:double"/>
<xs:attribute name="marginal” use="required" type="xs:double"/>

</xs:complexType>

</xs:element>

CMPL 2.1.0 - Manual 144

<xs:simpleType name= "varType'>
<xs:restriction base="xs:string’>
<xs:enumeration value="C"/>
<xs:enumeration value="I"/>
<xXs:enumeration value="B"/>
</Xs:restriction>

</xs:simpleType>

<xs:simpleType name= "conType">
<xs:restriction base="xs:string’>
<xs:enumeration value="L"/>
<xs:enumeration value="£"/>
<xs:enumeration value="G"/>
</Xs:restriction>

</xs:simpleType>

</Xs:schema>

The CmplSolutions file test.csol for the given CMPL example is generated as follows:

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<CmplSolutions version="1.1">
<general>
<instanceName>test.cmpl</instanceName>
<nrOfVariables>3</nrOfVariables>
<nrOfConstraints>2</nrOfConstraints>
<objectiveName>profit</objectiveName>
<objectiveSense>max</objectiveSense>
<nrOfSolutions>1</nrOfSolutions>
<solverName>SCIP</solverName>
<solverMsg>normal</solverMsg>
<variablesDisplayOptions>(all)</variablesDisplayOptions>
<constraintsDisplayOptions>(all)</constraintsDisplayOptions>
</general>
<solution idx="0" status="optimal" value="405">
<variables>
<variable idx="0" name="x[1]" type="C" activity="15" lowerBound="0"
upperBound="inf" marginal="0"/>
<variable idx="1" name="x[2]" type="C" activity="10" lowerBound="0"

upperBound="inf" marginal="0"/>

<variable i1dx="2" name="x[3]" type="C" activity="0" lowerBound="0"
upperBound="inf" marginal="-7"/>
</variables>

<linearConstraints>
<constraint idx="0" name="res[1l]" type="L" activity="175"

lowerBound="-inf" upperBound="175" marginal="1.4"/>

<constraint idx="1" name="res[2]" type="L" activity="200"

CMPL 2.1.0 - Manual 145

lowerBound="-inf" upperBound="200" marginal="0.8"/>
</linearConstraints>
</solution>
</CmplSolutions>

3.8.7 CmplMessages

CmplMessages is an XML-based format for representing the general status and/or errors of the transforma-
tion of a CMPL model in one of the described output files. CmplMessages is intended for communication with
other software that uses CMPL for modelling linear optimisation problems and can be obtained by the com-
mand line argument -cmsg [<file>].

It is also internally used for receiving CMPL messages from a CMPLServer.

An CmplMessages file consists of two major sections. The <general> section describes the general status
and the name of the model and a general message after the transformation. The <messages> section con-
sists of one or more messages about specific lines in the CMPL model.

The XSD is defined as follows:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://ww.w3.org / 2001/XMLSchema” elementFormDefault="qualified"

<xs:element name="CmpIMessages'>
<xs:complexType>
<XS:sequence>
<xs:element ref="general " minOccurs="1" maxOccurs="1"/>
<xs:element ref="messages"” minOccurs="0" maxOccurs= "unbounded"/>
</Xs:sequence>
<xs:attribute name="version" use="required" type="xs:decimal "/>
</xs:complexType>

</xs:element>

<xs:element name="general ">
<xs:complexType>
<XS:sequence>
<xs:element name="generalStatus” type="xs:string"” minOccurs="1" maxOccurs="1"/>
<xs:element name="instanceName" type="xs:string” minOccurs="1" maxOccurs="1"/>
<xs:element name="message” type="xs:string"” minOccurs="0" maxOccurs="1"/>
<xs:element name="cmplVersion" type="xs:string” minOccurs="1" maxOccurs="1"/>
</Xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="messages ">
<xs:complexType>
<XS:sequence>

<xs:element ref="message"” minOccurs="0" maxOccurs= "unbounded"/>

</Xs:sequence>

CMPL 2.1.0 - Manual 146

<xs:attribute name= "numberOfMessages"” use="required" type= "xs:nonNegativelnteger"/>
</xs:complexType>

</xs:element>

<xs:element name="message'>
<xs:complexType>
<xs:attribute name="type" type="msgType" use="required"/>
<xs:attribute name="module"” type="xs:string"” use="required"/>
<xs:attribute name="location" type="xs:string" use="required"/>
<xs:attribute name="description” type="xs:string" use="required"/>
</xs:complexType>

</xs:element>

<xs:simpleType name= "msgType ">
<xs:restriction base="xs:string's
<xs:enumeration value= "error"/>
<xs:enumeration value="warning"/>
</Xs:restriction>

</xs:simpleType>

</Xs:schema>

After excecuting the given CMPL model, CMPL will finish without errors. The general status is repres-
ented in the following CmplMesages file test.cmsg.

<?xml version="1.0" encoding="UTF-8"?>
<CmplMessages version="1.2">
<general>
<instanceName>test.cmpl</instanceName>
<generalStatus>normal</generalStatus>
<message>cmpl finished normal</message>
<cmplVersion>2.0.0</cmplVersion>
</general>

</CmplMessages>

If a wrong symbol name for the matrix 2 (e.g. a) is used in line 10 , CMPL would be finish with errors rep-
resented in CmplMesages file test.cmsg.

<?xml version="1.0" encoding="UTF-8"?>
<CmplMessages version="1.2">
<general>
<instanceName>test.cmpl</instanceName>
<generalStatus>error</generalStatus>
<message>cmpl finished with errors</message>
<cmplVersion>2.0.0 (beta)</cmplVersion>
</general>
<messages numberOfMessages="1">

<message type ="error" module ="compile" location="test.cmpl:10.11,

CMPL 2.1.0 - Manual 147

called from: command line:$1" description="symbol 'a' is not

defined"/>

</messages>

</CmplMessages>

4 CMPL's APIs

CMPL provides two APIs: pyCMPL for Python and jCMPL for Java.

The main idea of this APIs is to define sets and parameters within the user application, to start and control
the solving process and to read the solution(s) into the application if the problem is feasible. All variables,
objective functions and constraints are defined in CMPL. These functionalities can be used with a local CMPL

installation or a CMPLServer.

The structure and the classes including the methods and attributes are mostly identical or very similar in
both APIs. The main difference are the attributes of a class that can be obtained in pyCmpl by r/o attributes

and in jCMPL by getter methods.
4.1 Creating Python and Java applications with a local CMPL installation

pyCMPL and jCMPL contain a couple of classes to connect a Python or Java application with CMPL as shown
in the figure below.

‘ Application
| | ! 1
Cmpl solution(s)
model data model data CMPL messages
model solver messages
v h 4
. (@]
CmplSet » CmplParameter 3
j=3
I_$ m
¥ %
@®
=
» Cmpl CmplSolution CmplMessages g'
w
pyCMPL F 9 3
' I
CMPL model, CmpiData file(s), CmplSolutions CmplMessages

CMPL options, solver options I

+

CMPL
(supported solvers: HIGHS, SCIP, CBC, GLPK, Gurabi, Cplex)

CMPL 2.1.0 - Manual 148

The classes CmplSet and CmplParameter are intended to define sets and parameters that can be used
with several cmpl objects. With the cmp1l class it is possible to define a CMPL model, to commit sets and
parameters to this model, to start and control the solving process and to read the CMPL and solver mes-
sages and to have access to the solution(s) via CmplMessages and CmplSolutions objects.

To illustrate the formulation of a pyCmpl script and the corresponding java programme an example taken
from (Hillier/Liebermann 2010, p. 334f.) is used. Consider a simple assignment problem that deals with the
assignment of three machines to four possible locations. There is no work flow between the machines. The
total material handling costs are to be minimised. The hourly material handling costs per machine and loca-
tion are given in the following table.

Locations
1 2 3 4
1 13 16 12 11
Machines 2 15 - 13 20
3 5 7 10 6
The mathematical model
c.-x, =>min!
i i
(i,j)e4
S.t
Z x=1 ;i=1(1)m
(k. jlea
k=i
2 <l ;j=1(1)n
(i,1)e4
=]
x;€00,1) (i, j)e4
with
Parameters
A - set of the possible combination of machines and locations
m - number of machines
n - number of locations
c; - hourly material handling costs of machine i at location j
Variables
X, - assignment variable of machine i at location j

can be formulated in CMPL as follows:

$data : machines set, locations set, A set[2], c[A]

var:
x[A]: binary;

obj:
costs: sum{ [i,j] in A : c[i,J]*x[1,J] } -> min ;

CMPL 2.1.0 - Manual 149

con:
{ 1 in machines: sos m[i]: sum{ j in (A *> [i,*]) o x[1,31 1}
{ J in locations: sos _1[j]: sum{ i in (A *> [*,]]) : x[1i,7]

The interface for the sets and parameters provided by a pyCmpl script or jCMPL programme is the CMPL
header entry %data.

4.1.1 pyCMPL

The first step to formulate this problem as a pyCmpl script after importing the pyCmpl package is to create a
Cmp1l object where the argument of the constructor is the name of the CMPL file.

from pyCmpl import *

m = Cmpl ("assignment.cmpl")

As in the $data entry two 1-tuple sets machines and locations and one 2-tuple set A are necessary for
the CMPL model. To create a CmplSet a name and for ntuple sets with 7>1 the rank are needed as argu-
ments for the constructor. The name has to be identical to the corresponding name in the CMPL header
entry $data. The set data is specified by the cmp1set method setvalues. This is an overloaded method
with different arguments for several types of sets.

locations = CmplSet ("locations")

locations.setValues (1, 4)

machines = CmplSet ("machines")

machines.setValues (1, 3)

combinations = CmplSet ("A", 2)
combinations.setValues ([[1,11,11,21,11,31,101,41, [2,1]1,1[2,31,12,41,\
[3,11,103,2],13,3],[3,4]11)

As shown in the listing above the set 1ocations is assigned (1,2, ..,4) and the set machines consists
of (1,2,3) because the first argument of setvalues for this kind of sets is the starting value and the
second argument is the end value while the increment is by default equal to one. The values of the 2-tuple
set combinations are defined in the form of a list that consists of lists of valid combinations of machines
and locations.

For the definition of a CMPL parameter a user has to create a CmplParameter object where the first argu-
ment of the constructor is the name of the parameter. If the parameter is an array it is also necessary to
specify the set or sets through which the parameter array is defined. Therefore it is necessary to commit the
CmplSet combinations (beside the name "c") to create the CmplParameter array c .

c = CmplParameter ("c",combinations)
c.setValues([13,16,12,11,15,13,20,5,7,10,06])

CmplSet objects and CmplParameter objects can be used in several CMPL models and have to be com-
mitted to a Cmp1 model by the Cmpl methods setSets and setParameters. After this step the problem
can be solved by using the cmpl method solve.

CMPL 2.1.0 - Manual 150

m.setSets (machines, locations, combinations)

m.setParameters (c)

m.solve ()

After solving the model the status of CMPL and the invoked solver can be analysed through the cmp1 attrib-

utes solution.solverStatus and solution.cmplStatus.

print ("Objective value: " , m.solution.value)

print ("Objective status: " , m.solution.status)

If the problem is feasible and a solution is found it is possible to read the names, the types, the activities,
the lower and upper bounds and the marginal values of the variables and the constraints into the Python ap-
plication. The Ccmp1l attributes solution.variables and solution.constraints contain a list of
variable and constraint objects.

print ("Variables:")
for v in m.solution.variables:

print (("%$10s %$3s %8i %8i %8i" % (v.name, v.type, v.activity, v.lowerBound,

v.upperBound)))

print ("Constraints:")
for ¢ in m.solution.constraints:
print (("%$10s %3s %8.0f %8.0f %8.0f" % (c.name, c.type, c.activity,

c.lowerBound, c.upperBound)))

pyCmpl provides its own exception handling through the class CmplException that can be used in a try
and except block.

try:

except CmplException as e:

print (e.msqg)

The entire pyCmpl script assignment.py shows as follows:

from pyCmpl import *

try:
m = Cmpl ("assignment.cmpl")

locations = CmplSet ("locations")
locations.setValues (1, 4)

machines = CmplSet ("machines")
machines.setValues (1, 3)

combinations = CmplSet ("A", 2)
combinations.setValues ([[1,1],[1,2],([1,3],1(1,4],10(2,11,1[2,31,12,41,
[3,11,103,2],13,3],[3,4]11)

c = CmplParameter ("c",combinations)
c.setValues([13,16,12,11,15,13,20,5,7,10,06])

m.setSets (machines, locations, combinations)

CMPL 2.1.0 - Manual 151

m.setParameters (c)

m.solve ()
print ("Objective value: " , m.solution.value)
print ("Objective status: " , m.solution.status)

print ("Variables:")
for v in m.solution.variables:

v.lowerBound, v.upperBound)))

print ("Constraints:")
for ¢ in m.solution.constraints:
print (("%10s %3s %$8.0f %$8.0f %8.0f" % (c.name, c.type,
c.lowerBound, c.upperBound)))

except CmplException as e:
print (e.msqg)

print (("%$10s %$3s %8i %8i %8i" % (v.name, v.type, v.activity,

c.activity,

and can be executed by typing the command

python assignment.py

in the CmplShell and prints the following solution to stdOut.

Objective value: 29.0

Objective status: optimal
Variables:
x[1,1] B 0 0 1
x[1,2] B 0 0 1
x[1,3] B 0 0 1
x[1,4] B 1 0 1
x[2,1] B 0 0 1
x[2,3] B 1 0 1
x[2,4] B 0 0 1
x[3,1] B 1 0 1
x[3,2] B 0 0 1
x[3,3] B 0 0 1
x[3,4] B 0 0 1
Constraints:
sos m[1] E 1 1 1
sos_m[2] E 1 1 1
sos m[3] E 1 1 1
sos 1[1] L 1 -inf 1
sos 1[2] L 0 -inf 1
sos 1[3] L 1 -inf 1
sos_1[4] L 1 -inf 1

4.1.2 jCMPL

To use the jCMPL functionalities a Java programme has to import jCMPL by import JjCMPL.*;

and to link

your application against §Cmp1l.jar and the following jar files, that you can find in the CMPL applicatiopn

folder in jCmpl/Libs or on GitHub (https://github.com/MikeSteglich/iCmpl).

CMPL 2.1.0 - Manual 152

https://github.com/MikeSteglich/jCmpl

The first step to formulate this problem as a jCmpl programme after importing the jCmpl package is to cre-
ate a cmp1 object where the argument of the constructor is the name of the CMPL file. Since jCMPL provides
it own exception handling the main method has to throw CmplExeptions.

import jCMPL.*;

public class Assignment {
public static void main (String[] args) throws CmplException ({
try {
Cmpl m = new Cmpl ("assignment.cmpl") ;

As in pyCMPL to create a Cmpl1Set a name and for r+tuple sets with 7>1 the rank are needed as arguments
for the constructor whereby the name has to be identical to the corresponding name in the CMPL header
entry $data. The set data is specified by the cmp1set.setvalues (). This is an overloaded method with
different arguments for several types of sets.

CmplSet locations = new CmplSet ("locations");

locations.setValues (1, 4);

CmplSet machines = new CmplSet ("machines");

machines.setValues (1, 3);

CmplSet combinations = new CmplSet ("A", 2);
int[][] combivals = { {1, 1}, {1, 2}, {1, 3}, {1, 4}, {2, 1},

{2, 3y, {2, 4}, {3, 1}, {3, 2}, {3, 3}, {3, 4}};
combinations.setValues (combiVals) ;

In the listing above the set locations is assigned (1,2,..,4) and the set machines consists of
(1,2,3). The first argument of setvalues for this algorithmic sets is the starting value and the second
argument is the end value while the increment is by default equal to one. The values of the 2-tuple set com-
binations are defined in the form of a matrix of integers that consists all valid combinations of machines
and locations.

To create a CMPL parameter a user has to define a CmplParameter object whereby the first argument of
the constructor is the name of the parameter. For parameter arrays it is also necessary to specify the set or
sets through which the parameter array is defined. Therefore it is necessary to commit the cmplSet com-
binations (beside the name "c") to create the CmplParameter array c .

CmplParameter costs = new CmplParameter ("c", combinations);
int[] costVals = {13, 16, 12, 11, 15, 13, 20, 5, 7, 10, 6};

costs.setValues (costVals) ;

In the next step the sets and parameters have to be committed to a cmpl model by the cmpl methods
setSets and setParameters and the problem can be solved by using the cmp1l method solve.

m.setSets (machines, locations, combinations);
m.setParameters (costs) ;

m.solve () ;

CMPL 2.1.0 - Manual 153

After solving the model the status of CMPL and the invoked solver can be analysed through the methods
Cmpl.solution () .solverStatus ()and Cmpl.solution().cmplStatus().

System.out.printf ("Objective value: $%f %n", m.solution().value());
System.out.printf ("Objective status: %s %n", m.solution().status());

If the problem is feasible and a solution is found it is possible to read the names, the types, the activities,
the lower and upper bounds and the marginal values of the variables and the constraints into the Python ap-
plication. The methods Cmpl.solution().variables() and Cmpl.solution().constraints()
return a list of variable and constraint objects.

System.out.println("Variables:");
for (CmplSolElement v : m.solution() .variables()) {

System.out.printf ("$10s %$3s %10d %10.0f %10.0f%n", v.name (), v.typel(),

v.activity(), v.lowerBound(), v.upperBound()):
}
System.out.println ("Constraints:");
for (CmplSolElement c : m.solution().constraints()) {

System.out.printf ("%$10s %$3s %10.0f %10.0f %10.0£f%n", c.name(), c.typel(),
c.activity (), c.lowerBound(), c.upperBound()):;

}

The entire jCmpl programme assignment.java shows as follows:

import jCMPL.*;

public class Assignmentl {
public static void main(String[] args) throws CmplException {
try {
Cmpl m = new Cmpl ("assignment.cmpl");

CmplSet locations = new CmplSet ("locations");

locations.setValues (1, 4);

CmplSet machines = new CmplSet ("machines");

machines.setValues (1, 3);

CmplSet combinations = new CmplSet ("A", 2);

int[][] combivals = { {1, 1}, {1, 2}, {1, 3}, {1, 4%},{2, 1}y, {2, 3},
{2, 4},{3, 1}, {3, 2}, {3, 3}, {3, 4}};

combinations.setValues (combiVals) ;

CmplParameter costs = new CmplParameter ("c", combinations);
int[] costvals = {13, 1o, 12, 11, 15, 13, 20, 5, 7, 10, 6};

costs.setValues (costVals) ;

m.setSets (machines, locations, combinations);

m.setParameters (costs) ;

CMPL 2.1.0 - Manual 154

m.solve();

System.out.printf ("Objective value: %f %n", m.solution () .value());

System.out.printf ("Objective status: %s %n", m.solution().status());

System.out.println ("Variables:");

for (CmplSolElement v : m.solution().variables()) {

System.out.printf ("$10s %$3s %$10d %10.0f %10.0f%n", v.name(),

v.type(), v.activity(), v.lowerBound(), v.upperBound()):;

}

System.out.println ("Constraints:");

for (CmplSolElement ¢ : m.solution().constraints()) {

System.out.printf ("%$10s %$3s %10.0f %10.0f %10.0f%n", c.name(),

c.type(), c.activity(), c.lowerBound(), c.upperBound()):

}
} catch (CmplException e) {
System.out.println(e);

}

and prints after starting the following solution to stdOut.

Objective value: 29.000000

Objective status: optimal

Variables:
x[1,1] B 0 0 1
x[1,2] B 0 0 1
x[1,3] B 0 0 1
x[1,4] B 1 0 1
x[2,1] B 0 0 1
x[2,3] B 1 0 1
x[2,4] B 0 0 1
x[3,1] B 1 0 1
x[3,2] B 0 0 1
x[3,3] B 0 0 1
x[3,4] B 0 0 1
Constraints:
sos m[1] E 1 1 1
sos_m[2] E 1 1 1
sos m[3] E 1 1 1
sos 1[1] L 1 -Infinity 1
sos_1[2] L 0 -Infinity 1
sos_1[3] L 1 -Infinity 1
sos_1[4] L 1 -Infinity 1

CMPL 2.1.0 - Manual 155

4.2 Creating Python and Java applications using CMPLServer

The class cmp1 also provides the functionality to communicate with a CMPLServer or a CMPLGridScheduler
whereas it doesn't matter for the client whether it is connected to a single CMPLServer or to a CMPLGrid. As
shown in the figure below the first step to communicate with a CMPLServer is the Cmpl.connect method
that returns (if connected) a jobId. After connecting, a problem can be solved synchronously or asynchron-

ously.
Application
| | I A
model data model data Cmpl solution(s)
model and messages
—I w . + I
o
g CmplSet —» CmplParameter — Cmpl
2
connect solve send knock retrieve
r r F F Fr
gl 28 g 2l&
cl . o] c m
ol |o s 54 sl 18 o |8 =l 5|3
s [8 £|3s £ |E 3 [E 33
c = [E._Q_ [} v] n - E.E_
El £ £ £ Ele
HL Uv Olo Uwr h 4 - YO
CMPLServer (XML-RPC)
| £)

CMPL model, CmplData file(s) CmplSolutions CmplMessages
4 1 I

CMPL
(supported solvers: HiGHS, SCIP, CBC, GLPK, Gurobi, Cplex))

The cmpl method solve sends a CmplInstance string to the connected CMPLServer and waits for the
returning CmplSolutions, CmplMessages XML strings. After this synchronous process a user can ac-
cess the solution(s) if the problem is feasible or if not it can be analysed, whether the CMPL formulations or
the solver is the cause of the problem. To execute the solving process asynchronously the cmpl methods
send, knock and retrieve have to be used. Cmpl.send sends a CmplInstance string to the CM-
PLServer and starts the solving process remotely. Cmpl . knock asks for a CMPL model with a given jobId
whether the solving process is finished or not. If the problem is finished the cmplSolutions and the cm-
plMessages strings can be read into the user application with Cmpl.retrieve.

CMPL 2.1.0 - Manual 156

4.2.1 pyCMPL

The first step to create a distributed optimisation application is to start the CMPLServer. Assuming that a
CMPLServer is running on 127.0.0.1:8008 the assignment problem can be solved remotely only by in-
cluding

m.connect ("http://127.0.0.1:8008")

in the source code before cmp1l .solve is executed.

The pyCmpl script assignment-remote.py shows as follows:

from pyCmpl import *

try:

m = Cmpl ("assignment.cmpl")

locations = CmplSet ("locations")

locations.setValues (1, 4)

machines = CmplSet ("machines")

machines.setValues (1, 3)

combinations = CmplSet ("A", 2)
combinations.setValues ([[1,1],1[1,2],1([(1,3]1,1(1,4]1, [2,1]1,12,3]1,12,41, [3,1],
[3,2]1,13,31,1[3,411)

= CmplParameter ("c",combinations)

c
c.setvalues([13,16,12,11,15,13,20,5,7,10,6])

3

.setSets (machines, locations, combinations)

m.setParameters (c)

m.connect ("http://127.0.0.1:8008")

m.solve ()
print ("Objective value: " , m.solution.value)
print ("Objective status: " , m.solution.status)

print ("Variables:")
for v in m.solution.variables:

print (("%$10s %$3s %$8i %8i %8i" % (v.name, v.type, v.activity,

v.lowerBound, v.upperBound)))

print ("Constraints:")
for ¢ in m.solution.constraints:

print (("%10s %3s %$8.0f %8.0f %8.0f" % (c.name, c.type, c.activity,

c.lowerBound, c.upperBound)))

CMPL 2.1.0 - Manual 157

except CmplException as e:

print (e.msq)

4.2.2 jCMPL

The jCMPL programme assignment-remote.java shows as follows:

import jCMPL.*;
public class Assignmentl {
public static void main(String[] args) throws CmplException {
try {

Cmpl m = new Cmpl ("assignment.cmpl");

CmplSet locations = new CmplSet ("locations");

locations.setValues (1, 4);

CmplSet machines = new CmplSet ("machines");

machines.setValues (1, 3);

CmplSet combinations = new CmplSet ("A", 2);
int[][] combivals = { {1, 1}, {1, 2}, {1, 3}, {1, 4},{2, 1},

combinations.setValues (combiVals) ;
CmplParameter costs = new CmplParameter ("c", combinations);
int[] costvals = {13, 1o, 12, 11, 15, 13, 20, 5, 7, 10, 6};

costs.setValues (costVals) ;

m.setSets (machines, locations, combinations);

m.setParameters (costs) ;

m.connect ("http://127.0.0.1:8008") ;

System.out.printf ("$10s %$3s %$10d %10.0f %10.0f%n",

}

System.out.println ("Constraints:");

{2, 3},

{2, 4},{(3, 1}, {3, 2}, {3, 3}, {3, 4}};

m.solve () ;

System.out.printf ("Objective value: %f %n", m.solution() .value());
System.out.printf ("Objective status: %s %n", m.solution().status());
System.out.println ("Variables:");

for (CmplSolElement v : m.solution().variables()) {

v.name (),

v.type(), v.activity(), v.lowerBound(), v.upperBound()):;

CMPL 2.1.0 - Manual 158

for (CmplSolElement ¢ : m.solution().constraints()) {
System.out.printf ("%$10s %$3s %10.0f %10.0f %10.0f%n", c.name(),

c.type(), c.activity(), c.lowerBound(), c.upperBound()):

} catch (CmplException e) {
System.out.println(e);

4.3 pyCMPL reference manual

4.3.1 CmplSets

The class cmp1lset is intended to define sets that can be used with several cmp1 objects.

Methods:

CmplSet (setName [, rank])

Description: Constructor

Parameter: str setName name of the set, Has to be equal to the corresponding name
in the CMPL model.
int rank optional - rank 7 for a n-tuple set (default 1)
Return: CmplSet object

CmplSet.setValues (setList)

Description: Defines the values of an enumeration set
Parameter: list setList for a set of r+tuples with 7=1 - 11ist of single indexing
entries int |long|str

for a set of ntuples with 7>1 - 1ist of 1ist(s) that contain
int|long|str tuples

Return: -

CmplSet.setValues (startNumber,endNumber)

Description: Defines the values of an algorithmic set
(startNumber, startNumber+1, ..., endNumber)

Parameter: 1int startNumber start value of the set
int endNumber end value of the set

Return: -

CMPL 2.1.0 - Manual 159

CmplSet.setValues (startNumber, step,endNumber)

Description: Defines the values of an algorithmic set

(startNumber, startNumber+step, ..., endNumber)
Parameter: int startNumber start value of the set

int step positive value for increment
negative value for decrement

Int endNumber end value of the set
Return: -

R/o attributes:

CmplSet.values

Description: List of the indexing entries of the set

Return: list of single indexing entries - for a set of n-tuples with n=1
of tuple(s) - for a set of ntuples with 7>1
CmplSet.name

Description: Name of the set

Return: str name of the CMPL set (not the name of the cmp1set object)

CmplSet.rank

Description: Rank of the set

Return: int number of 1 of a n-tuple set
CmplSet.len

Description: Length of the set

Return: int number of indexing entries

Examples:

s = CmplSet ("s")

s.setValues (0,4) s is assigned s€(0,1,...,4)

.rank) 1
.len) 4
S
[

.name)

n n n n

.values)

s = CmplSet ("a")
s.setValues(10,-2,0) s is assigned s€(10,8,...,0)

print (s.rank) 1

CMPL 2.1.0 - Manual 160

print(s.len) 6
print (s.name) S
print (s.values) (1o, 8, 6, 4, 2, 0]

s = CmplSet ("FOOD")

s.setValues (["BEEF", "CHK", "FISH"]) s isassigned s€('BEEF','CHK',' FISH ')
print (s.rank) 1

print(s.len) 3

print (s.name) FOOD

print (s.values) ['BEEF', 'CHK', 'FISH']

s = CmplSet ("c", 3)

s.setvalues ([[1,1,1], [1,1,2], \ s is assigned a 3-tuple set of integers
[(1,2,11 1)

print (s.rank) 3

print(s.len) 3

print (s.name) c

print (s.values) (2, 1, 1, 1, 1, 2), (1, 2, 1)1

4.3.2 CmplParameters
The class cmplParameters is intended to define parameters that can be used with several cmp1 objects.

Methods:

CmplParameter (paramName [,setl,set2,...])

Description: Constructor

Parameter: str paramName name of the parameter
Has to be equal to the corresponding name in the CMPL
model.
CmplSet optional - set or sets through which the parameter array is
setl,set2,... defined (default None)
Return: CmplParameter object

CmplParameter.setValues (val)

Description: Defines the values of a scalar parameter

Parameter: int|long|float| value of the scalar parameter
str val

Return: -

CmplParameter.setValues (valList)

Description: Defines the values of a parameter array

CMPL 2.1.0 - Manual 161

Parameter: list valList list of int|long|float|str|list - value list of the
parameter array
Return: -

R/o attributes:

CmplParameter.values

Description: List of the values of a parameter

Return: list of int|long|float|str|list | dict - value list of the parameter array
CmplParameter.value

Description: Value of a scalar parameter

Return: int|long|float|str -value of the scalar parameter

CmplParameter.setList

Description: List of sets through which the parameter array is defined

Return: list of CmplSet objects through which the parameter array is defined

CmplParameter.name

Description: Name of the parameter

Return: str - name of the CMPL parameter (not the name of the CmplParameter object)
CmplParameter.rank

Description: Rank of the parameter

Return: int - rank of the CMPL parameter
CmplParameter.len

Description: Length of the parameter array

Return: long - number of elements in the parameter array

Examples:

p = CmplParameter ("p")
p.setValues (2) p is assigned 2

print (p.values) [2]
print (p.value))
print (p.name) P
print (p.rank) 0
print (p.len) 1

s = CmplSet ("s")
s.setValues (0,4)

p = CmplParameter ("p",s) pis assigned (1,2,...,5)
p.setValues([1,2,3,4,5])

CMPL 2.1.0 - Manual 162

products.setValues (1, 3)

machines = CmplSet ("machines")

machines.setValues (1,2)

a=CmplParameter ("a",machines, products)
a.setValues([[8,15,12]1,[15,10,811])

print (a.values)
print (a.name)
print (a.rank)
print (a.len)

for e in a.setlList:

print (e.values)

print (p.values) (1, 2, 3, 4, 5]
print (p.name) o)

print (p.rank) 1

print (p.len) 5

products = CmplSet ("products")

a is assigned a 2x3 matrix of integers

(rs, 15, 1zj, [15, 10, 8]1]

o N

0

= CmplSet ("s",2)
s.setValues ([[1,11,[2,211])

p = CmplParameter ("p", s)
p.setValues ([1,1])

prin(t p.values)
print (p.name)
print (p.rank)
print(p.len)

s is assigned the indices of a matrix diagonal

s is assigned a 2x2 identity matrix

combinations = CmplSet ("A", 2)
combinations.setValues([(1,1), ,

(1,2)
(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),
(3,2),(3,3),(3,4) 1)

\
\

costs = {(1,1):13,(1,2):16,(1,3):12, \
(1,4):11, (2,1):15,(2,3):13,(2,4):20, \
(3,1):5,(3,2):7,(3,3):10,(3,4) :6}

c = CmplParameter ("c",combinations)

c.setValues (costs)

Creates a cmplset object and assigns a 2-tuple
set to it.

Creates a dictionary with keys corresponding to
the combinations above and costs as values .

The dict costs is assigned as values for the Cm-
plParameter c.

CMPL 2.1.0 - Manual 163

4.3.3 Cmpl

With the cmp1 class it is possible to define a CMPL model, to commit sets and parameters to this model, to
start and control the solving process and to read the CMPL and solver messages and to have access to the
solution(s) via Cmp1Messages and CmplSolutions objects.

4.3.3.1 Establishing models

Methods:

Cmpl (name)

Description: Constructor
Parameter: str name filename of the CMPL model
Return: Cmpl object

Cmpl.setSets(setl[,set2,...])

Description: Committing cmp1Set objects to the cmp1 model

Parameter: CmplSet CmplSet object(s)
setl[,set2,...]

Return: -

Cmpl.setParameters (parl[,par2,...])

Description: Committing CmplParameter objects to the cmp1 model

Parameter: CmplParameter CmplParameter object(s)
parl[,par2,...]
Return: -
Examples:

m = Cmpl ("prodmix.cmpl")

products = CmplSet ("products")
products.setValues (1, 3)

machines = CmplSet ("machines")

machines.setValues (1,2)

c = CmplParameter ("c",products)
c.setValues ([75,80,507)

b = CmplParameter ("b",machines)
b.setValues ([1000,1000])

a = CmplParameter ("a",machines, products)

CMPL 2.1.0 - Manual 164

a.setValues([[8,15,12]1,[15,10,811])

m.setSets (products, machines) Commits the sets products, machines to
the Cmpl object m

m.setParameters(c,a,b) Commits the parameter c,a,b to the Cmpl ob-
ject m

4.3.3.2 Manipulating models

Methods:

Cmpl.setOption (option)
Description: Sets a CMPL, display or solver option
Parameter: str option option in CmplHeader syntax

Return: int option id

Cmpl.delOption (optId)
Description: Deletes an option
Parameter: int optId option id

Return: -

Cmpl.delOptions ()

Description: Deletes all options
Parameter: -
Return: -

Cmpl.setOutput(ok /[, leadString]])
Description: Turns the output of CMPL and the invoked solver on or off
Parameter: bool ok True|False

str leadString optional - Leading string for the output (default - model
name)

Return: -

Cmpl.setRefreshTime (rTime)

Description: Refresh time for getting the output of CMPL and the invoked solver from a
CMPLServer if the model is solved synchronously.
Parameter: float rTime refresh time in seconds (default 0.1)

Return: -

R/o attributes:

CMPL 2.1.0 - Manual 165

Cmpl.refreshTime

Description: Returns the refresh time for getting the output of CMPL and the invoked solver from
a CMPLServer if the model is solved synchronously.

Return: float

Examples:

Refresh time

m = Cmpl ("assignment.cmpl")
cl=m.setOption("-display nonZeros")
m.setOption ("-solver cplex")

m.setOption("-display solutionPool")

m.delOption(cl)
m.delOptions ()

Setting some options

Deletes the first option
Deletes all options

m = Cmpl ("assignment.cmpl")

m.setOutput (True)

m.setOutput (True, "my special model")

The stdOut and stdErr of CMPL and the invoked
solver are shown for the Cmpl object m.

As above but the output starts with the leading
string "my special model>".

= Cmpl ("assignment.cmpl")

.connect ("http://194.95.45.70:8008")
.setOutput (True)

.setRefreshTime (1)

2 2 32 B

The stdOut and stdErr of CMPL and the invoked
solver located at the specified CMPLServer will be
refreshed every second.

4.3.3.3 Solving models

Methods:

Cmpl.solve ()

Description: Solves a cmpl model either with a local installed CMPL or if the model is connected

with a CMPLServer remotely.

Parameter: -

Return: -

The status of the model and the solver can be obtained by

the attributes cmplstatus, cmplStatusText, solver-

Status and solverStatusText.

Cmpl.start()

CMPL 2.1.0 - Manual

166

Description:

Parameter:

Return:

Cmpl.join()

Description:
Parameter:

Return:

Cmpl.isAlive ()

Description:
Parameter:

Return:

Solves a cmpl model in a separate thread either with a local installed CMPL or if the
model is connected with a CMPLServer remotely.

The status of the model and the solver can be obtained by
the attributes cmplstatus, cmplStatusText, solver-
Status and solverStatusText.

Waits until the solving thread terminates.

The status of the model and the solver can be obtained by
the attributes cmplstatus, cmplStatusText, solver-
Status and solverStatusText.

Return whether the thread is alive

bool True Or False - return whether the thread is alive or not

Cmpl.connect (cmplUrl)

Description:

Parameter:

Return:

Connects a CMPLServer or CMPLGridScheduler under cmp1Url - first step of solv-
ing a model on a CMPLServer remotely
str cmplUrl URL of the CMPLServer or CMPLGridScheduler

- The status of the model can be obtained by the attributes
cmplStatus and cmplStatusText.

Cmpl.disconnect ()

Description:
Parameter:

Return:

Cmpl.send()

Description:

Parameter:

Return:

CMPL 2.1.0 - Manual

Disconnects the connected CMPLServer or CMPLGridScheduler

The status of the model can be obtained by the attributes
cmplStatus and cmplStatusText.

Sends the cmp1 model instance to the connected CMPLServer - first step of solving a
model on a CMPLServer asynchronously (after connect())

The status of the model can be obtained by the attributes
cmplStatus and cmplStatusText.

167

Cmpl.knock ()

Description:

Parameter:

Return:

Cmpl.retrieve ()

Description:

Parameter:

Return:

Cmpl.cancel ()

Description:

Parameter:

Return:

Knocks on the door of the connected CMPLServer or CMPLGridScheduler and asks
whether the model is finished - second step of solving a model on a CMPLServer
asynchronously

- The status of the model can be obtained by the attributes
cmplStatus and cmplStatusText.

Retrieves the cmp1 solution(s) if possible from the connected CMPLServer - last step

of solving a model on a CMPLServer asynchronously

- The status of the model and the solver can be obtained by
the attributes cmplstatus, cmplStatusText, solver-
Status and solverStatusText.

Cancels the cmp1 solving process on the connected CMPLServer

- The status of the model can be obtained by the attributes
cmplStatus and cmplStatusText.

Cmpl.setMaxServerQueuingTime (time)

Description:

Parameter:

Return:

Sets the maximum queuing time
float time

Cmpl.setMaxServerTries (nr)

Description:

Parameter:

Return:

R/o attributes:

Cmpl.cmplStatus

Description:

Return:

CMPL 2.1.0 - Manual

Sets the maximum tries of unsuccessful server calls
int nr

Returns the CMPL related status of the cmp1 object
int CMPL_UNKNOWN = 0
CMPL OK = 1

CMPL WARNINGS = 2
CMPL FAILED = 3

CMPLSERVER OK = 6

168

CMPLSERVER ERROR = 7
CMPLSERVER BUSY = 8
CMPLSERVER CLEANED
CMPLSERVER WARNING
PROBLEM RUNNING = 11

PROBLEM FINISHED 12

PROBLEM CANCELED 13

PROBLEM NOTRUNNING = 14

CMPLGRID SCHEDULER UNKNOWN = 15

CMPLGRID SCHEDULER OK = 16

CMPLGRID SCHEDULER ERROR = 17

CMPLGRID SCHEDULER BUSY = 18

CMPLGRID SCHEDULER SOLVER NOT AVAILABLE = 19
CMPLGRID SCHEDULER WARNING = 20

CMPLGRID SCHEDULER PROBLEM DELETED = 21

Il
—
o

Cmpl.cmplStatusText

Description: Returns the CMPL related status text of the cmp1 object

Return: str CMPL_UNKNOWN
CMPL_OK
CMPL_WARNINGS
CMPL_FAILED
CMPLSERVER_OK
CMPLSERVER ERROR
CMPLSERVER_BUSY
CMPLSERVER CLEANED
CMPLSERVER WARNING
PROBLEM RUNNING
PROBLEM FINISHED
PROBLEM CANCELED
PROBLEM NOTRUNNING
CMPLGRID SCHEDULER UNKNOWN
CMPLGRID SCHEDULER OK
CMPLGRID SCHEDULER ERROR
CMPLGRID SCHEDULER BUSY
CMPLGRID SCHEDULER SOLVER NOT AVAILABLE
CMPLGRID_ SCHEDULER WARNING
CMPLGRID SCHEDULER PROBLEM DELETED

Cmpl.solverStatus

Description: Returns the solver related status of the cmp1 object

Return: int SOLVER OK = 4
SOLVER FAILED = 5

CMPL 2.1.0 - Manual 169

Cmpl.solverStatusText

Description: Returns the solver related status text of the cmp1 object

Return: str

SOLVER OK

SOLVER_FAILED

Cmpl.jobId

Description: Returns the jobld of the cmp1 problem at the connected CMPLServer

Return: str

Cmpl.maxServerQueuingTime

string of the jobld

Description: Returns the maximum queuing time

Return: float

Cmpl.maxServerTries

Max time

Description: Returns the maximum server tries

Return: int Max tries
Examples:
m = Cmpl ("assignment.cmpl") Solves the cmpl object m locally
m.solve ()
m = Cmpl ("assignment.cmpl") Solves the Cmpl object m remotely and syn-
m.connect ("http://194.95.45.70:8008") chronously on the specified CMPLServer
m.solve ()
m = Cmpl ("assignment.cmpl") Solves the cmpl object m remotely and asyn-
m.connect ("http://194.95.45.70:8008") chronously on the specified CMPLServer
m.send ()
m.knock ()
m.retrieve ()
models= []

models.append (Cmpl ("ml.cmpl"))
models.append (Cmpl ("m2.cmpl"))
models.append (Cmpl ("m3.cmpl"))

for m in models:

m.start ()

for m in models:

m.join ()

Starts all models in separate threads.

Waits until the all solving threads are terminated.

m = Cmpl ("assignment.cmpl")
m.solve ()
if m.solverstatus!=SOLVER OK:

m.solutionReport ()

Displays the optimal solution if the solver didn't
fail.

CMPL 2.1.0 - Manual

170

4.3.3.4 Reading solutions

Methods:

Cmpl.solutionReport ()

Description: Writes a standard solution report to stdOut
Parameter: -
Return: -

Cmpl.saveSolution(/solFileName])

Description: Saves the solution(s) as CmplSolutions file
Parameter: str solFileName optional file name (default <modelname>.csol)

Return: -

Cmpl.saveSolutionAscii(/[solFileName])

Description: Saves the solution(s) as ASCII file
Parameter: str solFileName optional file name (default <modelname>.sol)

Return: -

Cmpl.saveSolutionCsv(/[solFileName])

Description: Saves the solution(s) as CSV file
Parameter: str solFileName optional file name (default <modelname>.csv)

Return: -

Access to variables and constraints

After a problem has been solved and a solution obtained, each variable and constraint can be accessed by
its name defined in the Cmpl model as attributes of the cMpL object. Each of these newly created attributes
returns a CmplSolution object.

R/o attributes:

Cmpl.nrOfVariables

Description: Returns the number of variables of the generated and solved CMPL model

Return: int number of variables

Cmpl.nrOfConstraints

Description: Returns the number of constraints of the generated and solved CMPL model
Return: int number of constraints

Cmpl.objectiveName

CMPL 2.1.0 - Manual 171

Cmpl.

Cmpl.

Cmpl.

Cmpl.

Cmpl.

Cmpl.

Cmpl.

Cmpl.

Description:

Returns the name of the objective function of the generated and solved CMPL model

Return: str objective hame
objectiveSense
Description: Returns the objective sense of the generated and solved CMPL model
Return: str objective sense
nrOfSolutions
Description: Returns the number of solutions of the generated and solved CMPL model
Return: int number of solutions
solver
Description: Returns the name of the invoked solver of the generated and solved CMPL model
Return: str invoked solver
solverMessage
Description: Returns the message of the invoked solver of the generated and solved CMPL model
Return: str message of the invoked solver
varDisplayOptions
Description: Returns a string with the display options for the variables of the generated and
solved CMPL model
Return: str display options for the variables
conDisplayOptions
Description: Returns a string with the display options for the constraints of the generated and
solved CMPL model
Return: str display options for the constraints
solution
Description: Returns the first (optimal) cmplSolutions object
Return: CmplSolutions first (optimal) solution
solutionPool
Description: Returns a list of Cmp1Solutions objects
Return: list of CmplSolu- list of CmplSolution object for solutions found

CMPL 2.1.0 - Manual

tions objects

172

CmplSolutions.status

Description: Returns a string with the status of the current solution provided by the invoked solver

Return: str solution status

CmplSolutions.value

Description: Returns the value of the objective function of the current solution
Return: float objective function value

CmplSolutions.idx

Description: Returns the index of the current solution

Return: int index of the current solution

CmplSolutions.variables

Description: Returns a list of cmp1SolElement objects for the variables of the current solution

Return: list of CmplSol- list of variables
Line objects

CmplSolutions.constraints

Description: Returns a list of CmplSolElement objects for the constraints of the current solution

Return: list of list of constraints
CmplSolElement
objects

CmplSolElement.idx

Description: Index of the variable or constraint
Return: int index of the variable or constraint

CmplSolElement .name

Description: Name of the variable or constraint

Return: str name of the variable or constraint

CmplSolElement. type

Description: Type of the variable or constraint

Return: str type of the variable or constraint
c|1|B for variables
L|E|G for constraints

CmplSolElement.activity

Description: Activity of the variable or constraint
Return: long| float activity of the variable or constraint

CMPL 2.1.0 - Manual 173

CmplSolElement.lowerBound

Description:

Return:

float

CmplSolElement .upperBound

Return:

float

CmplSolElement.marginal

Lower bound of the variable or constraint

lower bound of the variable or constraint

Description: Upper bound of the variable or constraint

upper bound of the variable or constraint

Description: Marginal value (shadow prices or reduced costs) bound of the variable or constraint

marginal value of the variable or constraint

Return: float
Examples:
m = Cmpl ("assignment.cmpl")
m.solve ()
print (m.solver)
print (m.solverMessage)
print (m.nrOfVariables)
print (m.nrOfConstraints)
print (m.varDisplayOptions)
print (m.conDisplayOptions)
print (m.objectiveName)
print (m.objectiveSense)
print (m.solution.value)
print (m.solution.status)
print (m.nrOfSolutions)
print (m.solution.idx)

Solves the example from subchapter 4.1 and
displays some information about the gener-
ated and solved model

CBC

(all)

(all)
costs
min
29.0

optimal

print (v.idx,v.name,

v.activity,v.lowerBound,

for v in m.solution.variables:

v.type, \
v.upperBound)

Displays all information about variables and
constraints of the optimal solution

Variables:

0 x[1,1] B 0 0.0 1.0
1 x[1,2] B O 0.0 1.0
2 x[1,3] B0 0.0 1.0
3 x[1,4] B 1 0.0 1.0
4 x[2,1] B O 0.0 1.0
5 x[2,3] B 1 0.0 1.0

CMPL 2.1.0 - Manual

174

for ¢ in m.solution.constraints:

print (c.idx, c.name, c.type, \

c.activity, c.lowerBound,

c.upperBound)

6 x[2,4] B O 0.0 1.0

7 x[3,11 B 1 0.0 1.0

8 x[3,2] B 0O 0.0 1.0

9 x[3,3] B 0O 0.0 1.0

10 x[3,4] B 0 0.0 1.0
Constraints:

0 sos m[1l] E 1.0 1.0 1.0
1l sos m[2] E 1.0 1.0 1.0
2 sos m[3] E 1.0 1.0 1.0
3 sos 1[1] L 1.0 —-inf 1.0
4 sos 1[2] L 0.0 —-inf 1.0
5 sos 1[3] L 1.0 -inf 1.0
6 sos 1[4] L 1.0 -inf 1.0

m = Cmpl ("assignment.cmpl")
m.setOption("-display nonZeros")
m.setOption ("-solver cplex")

m.setOption ("-display solutionPool")

3

.setOutput (True)

3

.solve ()

for s in m.solutionPool:

print ("Variables:")
for v in s.variables:
print ("$10s %$3s %8i %81 %$8i" % \
(v.name,v.type,v.activity, \
v.lowerBound, v.upperBound
print ("Constraints:")
for ¢ in s.constraints:
print ("$10s %$3s %8.0f %8.0f %8.0f"
% (c.name,c.type,c.activity, \

c.lowerBound, c.upperBound))

print ("\nSolution number: " , s.idx+1)
print ("Objective value: " , s.value)
print ("Objective status: " , s.status)

))

\

Solves the example from subchapter 4.1 and
displays all information about variables and
constraints of all solutions found

Solution number: 1

Objective value: 29.0

Objective status: integer optimal solu-
tion
Variables:
x[1,4] B 1 0 1
x[2,3] B 1 0 1
x[3,1] B 1 0 1
Constraints:
sos m[1l] E 1 1 1
sos m[2] E 1 1 1
sos m[3] E 1 1 1
sos 1[1] L 1 -inf 1
sos_1[3] L 1 -inf 1
sos_1[4] L 1 -inf 1
Solution number: 2
Objective value: 29.0
Objective status: integer feasible solu-
tion
Variables:
x[1,4] B 1 0 1
x[2,3] B 1 0 1
x[3,1] B 1 0 1
Constraints:
sos_m[1] E 1 1 1
sos_m[2] E 1 1 1
sos_m[3] E 1 1 1
sos_1[1] L 1 -inf 1
sos 1[3] L 1 -inf 1
sos_1[4] L 1 -inf 1
Solution number: 3
Objective value: 33.0

CMPL 2.1.0 - Manual 175

Objective status: integer feasible solu-

tion
Variables:
x[1,1] B 1 0 1
x[2,3] B 1 0 1
x[3,2] B 1 0 1
Constraints:
sos m[1] E 1 1 1
sos_m[2] E 1 1 1
sos_m[3] E 1 1 1
sos_1[1] L 1 —-inf 1
sos 1[2] L 1 —-inf 1
sos_1[3] L 1 —-inf 1

for s in m.solutionPool:
print ("Variables:"

print (m.x[c].name,m.x[c]
m.x[c].activity,\
m.x[c].lowerBound, \

m.x[c] .upperBound)

print ("Constraints:"
for i in m.sos m:
print (m.sos m[i].name, \
m.sos m[i].type, \

m.sos m[i].activity,\

[i
[i].
m.sos_m[i].lowerBound, \
m.sos m[i].upperBound)
for j in m.sos 1:

print(m.sos_1[j].name, \

m.sos_1[J].type,\
m.sos_1[j].activity,\
m.sos_1[j].lowerBound, \
m.sos_1[j].upperBound)

for ¢ in combinations.values:

.type, \

As above but with direct access to the vari-
able and constraint by their names.

Iterates the variables x[i,j] over the value

list of the Cmplset object combinations

Iterates over the internal list of the indexing
entries of the constraints with the name

sos_m

Iterates over the internal list of the indexing
entries of the constraints with the name

sos 1

4.3.3.5 Reading CMPL messages

R/o attributes:

Cmpl.cmplMessages

Description: Returns a list of cmp1Msg objects that contain the CMPL messages

Return: list of CmplMsg

objects

CMPL 2.1.0 - Manual

list of CMPL messages

CmplMsg.type

Description: Returns the type of the
Return: str

CmplMsg.module

messages

message type warning|error

Description: Returns the name of the CMPL module in that the error or warning occurs

Return: str

CmplMsg.location

CMPL module name

Description: Returns the location where the error or warning occurs

Return: str

CmplMsg.description

Description: Returns a description of

location

the error or warning message

Return: str description of the error or warning

Examples:

model = Cmpl ("diet.cmpl")

model.solve ()

for m in model.cmplMessages:
print (m.type, \
m.module, \
m.location, \

m.description)

if model.cmplStatus==CMPL WARNINGS:

If some warnings for the CMPL model
diet.cmpl appear the messages will be shown.

4.3.4 CmplExceptions

pyCMPL provides its own exception handling.

If an error occurs either by using pyCmpl classes or in the

CMPL model a cmplException is raised by pyCmpl automatically. This exception can be handled through

using a try-except block.

try:
do something
except CmplException as e:

print (e.msg)

CMPL 2.1.0 - Manual

177

4.4 jCMPL reference manual

To use the jCMPL functionalities a Java programme has to import jCMPL by import jCMPL.*; and to link
your application against §Ccmp1l.jar and the following jar files, that you can find in the CMPL applicatiopn
folder in yCmpl1/1ib or on GitHub (https://github.com/MikeSteglich/jCmpl).

4.4.1 CmplSets
The class cmp1lset is intended to define sets that can be used with several cmp1 objects.

Setter methods:

CmplSet (setName [, rank])

Description: Constructor
Parameter: String setName name of the set

Has to be equal to the corresponding name in the CMPL
model.

int rank optional - rank 2 for a ntuple set (default 1)
Return: CmplSet object

CmplSet.setValues (setList)

Description: Defines the values of an enumeration set

Parameter: Object setList for a set of +tuples with 7=1 - List |Array of single index-
ing entries int | Integer|long|Long|String
for a set of ntuples with 7>1 — 2-dimensional List |Array
that contain int | Integer|long|Long|String tuples

Return: -

CmplSet.setValues (startNumber,endNumber)
Description: Defines the values of an algorithmic set
(startNumber, startNumber+1, ..., endNumber)
Parameter: int startNumber start value of the set
int endNumber end value of the set

Return: -

CmplSet.setValues (startNumber, step,endNumber)
Description: Defines the values of an algorithmic set
(startNumber, startNumber+step, ..., endNumber)
Parameter: int startNumber start value of the set

int step positive value for increment
negative value for decrement

CMPL 2.1.0 - Manual 178

https://github.com/MikeSteglich/jCmpl

int endNumber

Return: -

Getter methods:

CmplSet.values ()

Description:
List |
Object

Return: Array of

CmplSet.name ()

Description: Name of the set

Return: String

CmplSet.rank ()

Rank of the set

int

Description:
Return:

CmplSet.len()

end value of the set

List of the indexing entries of the set

one-dimensional List or Array of single int | Integer|
long|Long|String - for a set of tuples with n=1
two-dimensional List or Array of int | Integer|long]|
Long|String - for a set of ntuples with 7>1

name of the CMPL set (not the name of the cmp1set object)

number of 17 0of a rtuple set

Description: Length of the set

Return: int number of indexing entries
Examples:
CmplSet s = new CmplSet("s");

s.setValues (0,4);

System.out.println(s.rank());
System.out.println(s.len());
System.out.println(s.name());
System.out.println(s.values());

s is assigned s€(0,1,...

— 0 0

CmplSet s
s.setValues (10,-2,0);

new CmplSet ("a");

System.out.println(s.rank());
System.out.println(s.len());
System.out.println(s.name ());
System.out.println(s.values());
CmplSet s = new CmplSet ("FOOD");
Sring[] sVals

{ "BEEF", "CHK", HFISHH } ;

s.setValues (sVals);

sisassigned s€('BEEF','CHK',' FISH')

CMPL 2.1.0 - Manual

179

System.out.println(s.rank());

System.out.println(s.len());
System.out.println(s.name());
for (String e: (String[]) s.values())

System.out.println(e);

FOOD

BEEF
CHK
FISH

CmplSet s = new CmplSet ("FOOD") ;

ArrayList nutrLst =
new ArrayList<String>();
nutrLst.add ("BEEF") ;

nutrLst.add ("CHK")
nutrLst.add ("FISH") ;
s.setValues (nutrLst) ;

.rank ());
.len());
.name ());

));

System.out.println

(s
System.out.println(s
System.out.println(s
System.out.println(s.values(

sisassigned s€('BEEF','CHK',' FISH')

1
3
FOOD

[BEEF, CHK, FISH]

", 3);
{1,1,13},
{1,2,1} };

CmplSet s = new CmplSet ("c
int[][] sVals = {

s.setValues (sVals);
System.out.println(s.rank());
System.out.println(s.len());
System.out.println(s.name());
(int i=0;
(int j=0;

for i<s.len(); 1i++) {

for j<s.rank(); Jj++)

System.out.print(s.get(i,])

{11112}1

) ;

s is assigned a 3-tuple set of integers

111
112
121

4.4.2 CmplParameters

The class CmplParameters is intended to define parameters that can be used with several cmp1 objects.

Setter methods:

CmplParameter (paramName" [, setl, set2,

Description: Constructor

Parameter:

CMPL 2.1.0 - Manual

-1)

String paramName name of the parameter

180

Has to be equal to the corresponding name in the CMPL

model.
CmplSet optional - set or sets through which the parameter array is
setl,set2,... defined (default None)
Return: CmplParameter object

CmplParameter.setValues (val)

Description: Defines the values of a scalar parameter

Parameter: int|Integer| value of the scalar parameter
long|Long| float]|
Float|double]|
Double|String

val

Return: -

CmplParameter.setValues (vals)

Description: Defines the values of a parameter array

Parameter: Object wvals one- our multidimensional List|Array of int|Integer]
long|Long|float|Float|double|Double|String

Return: -

Getter methods:

CmplParameter.values ()

Description: List of the values of a parameter
Return: Object - one-our multidimensional List|Array of int|Integer|long]
Long|float|Float|double|Double|String - value list of the parameter array

CmplParameter.value ()

Description: Value of a scalar parameter
Return: int|Integer|long|Long|float|Float|double|Double|String - value of
the scalar parameter

CmplParameter.setList ()

Description: List of sets through which the parameter array is defined
Return: list of CmplSet objects through which the parameter array is defined

CmplParameter.name ()

Description: Name of the parameter
Return: String - name of the CMPL parameter (not the name of the CmplParameter ob-
ject)

CMPL 2.1.0 - Manual 181

CmplParameter.rank ()

Description: Rank of the parameter
Return: int - rank of the CMPL parameter

CmplParameter.len()

Description: Length of the parameter array

Return: long number of elements in the parameter array

Examples:

CmplParameter p = new CmplParameter ("p"):;
p.setValues (2) ;

System.out.println .values());
System.out.println .value ());

.name ()) ;

T 'O T 'O

System.out.println

(
(

System.out.println(
(p.rank());
(

System.out.println(p.len());

p is assigned 2

R o T NN

CmplSet s = new CmplSet ("s");
s.setValues (0,4);

int[] pvVals = { 1,2,3,4,5 };
p.setValues (pVals) ;

for (int wval : (int[])p.values())

System.out.println(val);

System.out.println(p.name());
System.out.println(p.rank());
System.out.println(p.len());

CmplParameter p = new CmplParameter ("p",s):;

is assigned (1,2,...,5)

g s w N - T

— 'O

products.setValues (1, 3);

machines.setValues (1,2);

CmplParameter a = new
CmplParameter ("a",machines, products) ;
int[][] avals = { {8,15,12}, {15,10,8} };

a.setValues (aVals);

CmplSet products = new CmplSet ("products");

CmplSet machines = new CmplSet ("machines");

a is assigned a 2x3 matrix of integers

CMPL 2.1.0 - Manual 182

for (int i=0; i<machines.len(); i++) {

for (int Jj=0; j<products.len(); Jj++)

System.out.print(" " +
((intl[][])a.values()) [1]1[7]) ;
System.out.println(); 8 15 12
) 15 10 8
System.out.println(a.name());
System.out.println(a.rank()); a
System.out.println(a.len()); 2
for (CmplSet s : a.setList())
System.out.println(s.values());
(1, 21
(1, 2, 3]
CmplSet s = new CmplSet ("s",2);
int[][] svals = { {1,1}, {2,2} };
s.setValues (sVals); s is assigned the indices of a matrix
diagonal

CmplParameter p = new CmplParameter ("p",s);
int[] pVals = { 1 , 1} ;
p.setValues (pVals) ;

s is assigned a 2x2 identity matrix

for (int val : (int[])p.values())

1

System.out.println(val);
System.out.println(a.name()); o
System.out.println(a.rank()); 5

System.out.println(a.len());

4.4.3 Cmpl

With the cmp1 class it is possible to define a CMPL model, to commit sets and parameters to this model, to
start and control the solving process and to read the CMPL and solver messages and to have access to the
solution(s) via CmplMessages and CmplSolutions objects.

4.4.3.1 Establishing models
Setter methods:

Cmpl (name)

Description: Constructor
Parameter: String name filename of the CMPL model

Return: Cmpl object

CMPL 2.1.0 - Manual 183

Cmpl.setSets(setl/[,set2,...])

Description: Committing Cmp1Set objects to the cmp1 model

Parameter: CmplSet CmplSet object(s)
setl[,set2,...]

Return: -

Cmpl.setParameters (parl/[,par2,...])

Description: Committing Cmp1lParameter objects to the cmp1l model
Parameter: CmplParameter CmplParameter object(s)
parl[,par2,...]
Return: -
Examples:
Cmpl m = new Cmpl ("prodmix.cmpl") ;

CmplSet products =

new CmplSet ("products") ;
products.setValues (1,3);
mplSet machines = new CmplSet ("machines");

machines.setValues (1,2);

CmplParameter c =
new CmplParameter ("c",products);
int[] {75,80,50};

c.setValues (cVals);

cVals =

CmplParameter b =

new CmplParameter ("b",machines);
int[] bVals = {1000,1000};
b.setValues (bvals) ;

CmplParameter a =

new CmplParameter ("a",machines, products) ;
int[][] avals = { {8,15,12}, {15,10,8} };

a.setValues (aVals) ;

m.setSets (products,machines) ;

m.setParameters (c,a,b);

Commits the sets products,machines
to the Cmpl object m

Commits the parameter ¢, a,b tothe
Cmpl object m

CMPL 2.1.0 - Manual 184

4.4.3.2 Manipulating models

Setter methods:

Cmpl.setOption (option)
Description: Sets a CMPL, display or solver option

Parameter: String option option in CmplHeader syntax
Return: int option id

Cmpl.delOption (optId)
Description: Deletes an option

Parameter: Int optId option id
Return: -

Cmpl.delOptions ()

Description: Deletes all options
Parameter: -

Return: -

Cmpl.setOutput (ok /[, leadStr]])
Description: Turns the output of CMPL and the invoked solver on or off
Parameter: boolean ok true| false

String leadStr optional - Leading string for the output (default - model
name)

Return: -

Cmpl.setRefreshTime (rTime)

Description: Refresh time for getting the output of CMPL and the invoked solver from a CM-
PLServer if the model is solved synchronously.

Parameter: long rTime refresh time in milliseconds (default 400)
Return: -

Getter methods:

Cmpl.refreshTime ()

Description: Returns the refresh time for getting the output of CMPL and the invoked solver from
a CMPLServer if the model is solved synchronously.

Return: long Refresh time in milliseconds

CMPL 2.1.0 - Manual 185

Examples:

Cmpl m = new Cmpl ("assignment.cmpl") ;

long cl=m.setOption ("%display nonZeros");

m.setOption ("%arg -solver cplex");

m.setOption ("%display solutionPool");

m.delOption(cl);
m.delOptions () ;

Setting some options

Deletes the first option
Deletes all options

Cmpl m = new Cmpl ("assignment.cmpl");

m.setOutput (True) ;

m.setOutput (True, "my special model");

The stdOut and stdErr of CMPL and the invoked
solver are shown for the cmpl object m.

As above but the output starts with the leading
string "my special model>".

Cmpl m = new Cmpl ("assignment.cmpl");

m.connect ("http://194.95.45.70:8008") ;

m.setOutput (True) ;
m.setRefreshTime (500) ;

The stdout and stdeErr of CMPL and the in-
voked solver located at the specified CMPLServer
will be refreshed every 500 millisecond.

4.4.3.3 Solving models

Setter Methods:

Cmpl.solve ()

Description:
with a CMPLServer remotely.

Parameter:

Return: -

Solves a cmp1 model either with a local installed CMPL or if the model is connected

status of the model and the solver can be obtained by the

methods cmplStatus, cmplStatusText, solverStatus

and solverStatusText

Cmpl.start()

Description:

Solves a Cmpl model in a separate thread either with a local installed CMPL or if the

model is connected with a CMPLServer remotely.

Parameter: -

Return: -

status of the model and the solver can be obtained by the

methods cmplStatus, cmplStatusText, solverStatus

and solverStatusText

CMPL 2.1.0 - Manual

186

Cmpl.join()

Description:
Parameter:

Return:

Cmpl.isAlive ()

Description:
Parameter:
Return:

Waits until the solving thread terminates.

status of the model and the solver can be obtained by the
methods cmplStatus, cmplStatusText, solverStatus
and solverStatusText

Return whether the thread is alive

boolean true or false - return whether the thread is alive or not

Cmpl.connect (cmplUrl)

Description:

Parameter:

Return:

Connects a CMPLServer or CMPLGridScheduler under cmplUrl - first step of solv-
ing a model on a CMPLServer remotely
String cmplUrl URL of the CMPLServer or CMPLGridScheduler

Cmpl.disconnect ()

Description:
Parameter:

Return:

Cmpl.send()

Description:

Parameter:

Return:

Cmpl .knock ()

Description:

Parameter:

Return:

CMPL 2.1.0 - Manual

Disconnects the connected CMPLServer or CMPLGridScheduler

Sends the cmp1 model instance to the connected CMPLServer - first step of solving a
model on a CMPLServer asynchronously (after connect())

- status of the model can be obtained by the methods cm-
plStatus and cmplStatusText

Knocks on the door of the connected CMPLServer or CMPLGridScheduler and asks
whether the model is finished - second step of solving a model on a CMPLServer
asynchronously

- status of the model can be obtained by the methods
cmplStatus and cmplStatusText

187

Cmpl.retrieve ()
Description: Retrieves the Cmp1 solution(s) if possible from the connected CMPLServer - last step
of solving a model on a CMPLServer asynchronously
Parameter: -

Return: - status of the model and the solver can be obtained by the
methods cmplStatus, cmplStatusText, solverStatus
and solverStatusText

Cmpl.cancel ()

Description: Cancels the cmp1 solving process on the connected CMPLServer
Parameter: -

Return: - status of the model can be obtained by the methods
cmplStatus and cmplStatusText

Getter methods:

Cmpl.cmplStatus ()

Description: Returns the CMPL related status of the cmp1 object

Return: int CMPL_UNKNOWN = 0
CMPL OK = 1
CMPL_WARNINGS = 2
CMPL_FAILED = 3
CMPLSERVER OK = 6

CMPLSERVER ERROR = 7
CMPLSERVER BUSY = 8
CMPLSERVER CLEANED =
CMPLSERVER WARNING
PROBLEM RUNNING = 11

PROBLEM FINISHED = 12

PROBLEM CANCELED = 13

PROBLEM NOTRUNNING = 14

CMPLGRID SCHEDULER UNKNOWN = 15

CMPLGRID SCHEDULER OK = 16

CMPLGRID SCHEDULER ERROR = 17

CMPLGRID SCHEDULER BUSY = 18

CMPLGRID SCHEDULER SOLVER NOT AVAILABLE = 19
CMPLGRID SCHEDULER WARNING = 20

CMPLGRID SCHEDULER_ PROBLEM DELETED = 21

Il
-
o

Cmpl.cmplStatusText ()

Description: Returns the CMPL related status text of the cmp1 object

Return: String CMPL_UNKNOWN
CMPL_OK

CMPL 2.1.0 - Manual 188

CMPL WARNINGS

CMPL FAILED

CMPLSERVER OK

CMPLSERVER ERROR

CMPLSERVER BUSY

CMPLSERVER CLEANED

CMPLSERVER WARNING

PROBLEM RUNNING

PROBLEM FINISHED

PROBLEM CANCELED

PROBLEM NOTRUNNING

CMPLGRID SCHEDULER UNKNOWN
CMPLGRID_ SCHEDULER OK

CMPLGRID SCHEDULER ERROR

CMPLGRID_ SCHEDULER BUSY

CMPLGRID SCHEDULER SOLVER NOT AVAILABLE
CMPLGRID SCHEDULER WARNING
CMPLGRID SCHEDULER PROBLEM DELETED

Cmpl.solverStatus ()

Description: Returns the solver related status of the cmp1 object
Return: int SOLVER OK = 4

SOLVER FAILED = 5
Cmpl.solverStatusText ()

Description: Returns the solver related status text of the cmp1 object
Return: String SOLVER OK

SOLVER_FAILED
Cmpl.jobId()

Description: Returns the jobld of the cmp1 problem at the connected CMPLServer
Return: String string of the jobld

Cmpl.output ()

Description: Returns the output of CMPL and the invoked solver.
Intended to use if an application needs to parse the output.

Return: String string of output of CMPL and the invoked solver
Examples:
Cmpl m = new Cmpl ("assignment.cmpl”); Solves the cmpl object m locally
m.solve();
Cmpl m = new Cmpl ("assignment.cmpl"); Solves the Cmpl object m remotely and syn-
m.connect ("http://127.0.0.1:8008") ;

CMPL 2.1.0 - Manual 189

m.solve () ; chronously on the specified CMPLServer

Cmpl m = new Cmpl ("assignment.cmpl"); Solves the cmpl object m remotely and asyn-
m.connect ("http://127.0.0.1:8008") ;

m.send () ;

chronously on the specified CMPLServer

m.knock () ;

m.retrieve();

ArrayList<Cmpl> models =
new ArrayList<Cmpl>();

models.add (new Cmpl ("ml.cmpl"))
models.add (new Cmpl ("m2.cmpl"));
models.add(new Cmpl ("m3.cmpl"));

for (Cmpl c : models) Starts all models in separate threads.

c.start(); Waits until the all solving threads are terminated.
for (Cmpl c : models)

c.join () ;

Cmpl m = new Cmpl ("assignment.cmpl");
m.solve () ;

if (m.solverStatus() == Cmpl.SOLVER_OK) Displays the optimal solution if the solver didn't
m.solutionReport () ; fail.

4.4.3.4 Reading solutions

Setter methods:

Cmpl.solutionReport ()

Description: Writes a standard solution report to stdOut
Parameter: -
Return: -

Cmpl.saveSolution(/solFileName])

Description: Saves the solution(s) as CmplSolutions file

Parameter: String solFile- optional file name (default <modelname>.csol)
Name

Return: -

CMPL 2.1.0 - Manual 190

Cmpl.

Cmpl.

saveSolutionAscii(/solFileName])

Description: Saves the solution(s) as ASCII file

Parameter: String solFile- optional file name (default <modelname>.sol)
Name

Return: -

saveSolutionCsv (/[solFileName])

Description: Saves the solution(s) as CSV file

Parameter: String solFile- optional file name (default <modelname>.csv)
Name

Return: -

Getter methods:

Cmpl.

Cmpl.

Cmpl.

Cmpl.

Cmpl.

Cmpl.

nrOfVariables ()
Description: Returns the number of variables of the generated and solved CMPL model
Return: long number of variables

nrOfConstraints ()
Description: Returns the number of constraints of the generated and solved CMPL model
Return: long number of constraints

objectiveName ()
Description: Returns the name of the objective function of the generated and solved CMPL model
Return: String objective hame

objectiveSense ()
Description: Returns the objective sense of the generated and solved CMPL model
Return: String objective sense

nrOfSolutions ()
Description: Returns the number of solutions of the generated and solved CMPL model
Return: int number of solutions

solver ()

Description: Returns the name of the invoked solver of the generated and solved CMPL model
Return: String invoked solver

CMPL 2.1.0 - Manual 191

Cmpl.solverMessage ()

Description: Returns the message of the invoked solver of the generated and solved CMPL model
Return: String message of the invoked solver

Cmpl.varDisplayOptions ()

Description: Returns a string with the display options for the variables of the generated and
solved CMPL model

Return: String display options for the variables

Cmpl.conDisplayOptions ()

Description: Returns a string with the display options for the constraints of the generated and
solved CMPL model

Return: String display options for the constraints

Cmpl.solution ()

Description: Returns the first (optimal) cmpl1Solutions object

Return: CmplSolutions first (optimal) solution

Cmpl.solutionPool ()

Description: Returns a list of CmplSolutions objects

Return: List of CmplSolu- list of CmplSolution object for solutions found
tions objects
CmplSolutions.status ()
Description: Returns a string with the status of the current solution provided by the invoked solver
Return: String solution status
CmplSolutions.value ()

Description: Returns the value of the objective function of the current solution

Return: double objective function value
CmplSolutions.idx()

Description: Returns the index of the current solution

Return: int index of the current solution

CmplSolutions.variables ()

Description: Returns a list of cmplSolElement objects for the variables of the current solution

Return: ArrayList<Cm- list of variables
plSolElement>

CMPL 2.1.0 - Manual 192

CmplSolutions.constraints()

Description: Returns a list of CmplSolElement objects for the constraints of the current solution
Return: ArrayList<Cm-

list of constraints
plSolElement>

Cmpl.getVarByName (name, [solIdx])
Description: Returns a CmplSolElement object or CmplSolArray of CmplSolElement Ob-

jects for the variable or variable array with the specified name

Parameter: String name name of the variable or variable array

int solldx optional solution index (default 0)

Return: Object CmplSolElement for a single variable

CmplSolArray for a variable array
Cmpl.getConByName ([solIdx])
Description:

Returns a CmplSolElement object or CmplSolArray of CmplSolElement ob-

jects for the constraint or constraint array with the specified name
Parameter: String name name of the constraint or constraint array

int solldx optional solution index (default 0)

Return: Object CmplSolElement for a single constraint

CmplSolArray for a constraint array

CmplSolElement.idx ()

Description: Index of the variable or constraint

Return: int index of the variable or constraint

CmplSolElement .name ()

Description: Name of the variable or constraint

Return: String name of the variable or constraint

CmplSolElement. type ()

Description: Type of the variable or constraint

Return: String type of the variable or constraint

Cc|1I|B for variables

L|E|G for constraints

CmplSolElement.activity ()

Description: Activity of the variable or constraint

Return: Object Double| Long Activity of the variable or constraint

CMPL 2.1.0 - Manual 193

CmplSolElement.lowerBound ()

Lower bound of the variable or constraint
double

Description:
Return:

CmplSolElement .upperBound ()

Description: Upper bound of the variable or constraint

Return: double

CmplSolElement.marginal ()

lower bound of the variable or constraint

upper bound of the variable or constraint

Description: Marginal value (shadow prices or reduced costs) bound of the variable or constraint
Return: double marginal value of the variable or constraint

Examples:

Cmpl m = new Cmpl ("assignment.cmpl"); Solves the example from subchapter

m.solve();

4.1 and displays some information
about the generated and solved
model

System.out.printf ("$s\n",m.solver()); CBC
System.out.printf ("$s\n",m.solverMessage ()) ;
System.out.printf ("$d\n",m.nrOfVariables()); 11
System.out.printf ("$d\n",m.nrOfConstraints()) ; 7
System.out.printf ("$s\n",m.varDisplayOptions()); (all)
System.out.printf ("$s\n",m.conDisplayOptions()); (all)
System.out.printf ("$s\n",m.objectiveName ()) ; costs
System.out.printf ("$s\n",m.objectiveSense()) ; min
System.out.printf ("$f\n",m.solution() .value()); 29.000000
System.out.printf ("$s\n",m.solution () .status()); optimal
System.out.printf ("$d\n",m.nrOfSolutions()) ; 1
System.out.printf ("$d\n",m.solution () .idx()); 0
Displays all information about vari-
ables and constraints of the optimal
solution
for (CmplSolElement v m.solution () .variables()) |Variables:
{ x[1,1] B 0 0 1
System.out.printf ("%8s %2s %2d %2.0f %2.0f%n x[1,2] B 0 0 1
v.name (), v.type(),v.activity(), x[1,3] B 0 0 1
v.lowerBound (), v.upperBound()) ; x[1,4] B 1 0 1
} x[2,1] B 0 0 1
x[2,3] B 1 0 1
x[2,4] B 0 0 1
x[3,1] B 1 0 1
CMPL 2.1.0 - Manual 194

for

{
System.out.printf ("$8s %2s %2.0f %2.0f %2.0f

(CmplSolElement c:m.solution() .constraints())

%n", c.name(), c.type(),c.activity(),

c.lowerBound (), c.upperBound());

x[3,2]

Constraints:

o o o o 3 N B 3

1
1
1

1 -Infinity
0 -Infinity
1 -Infinity

1
1
1

1
1
1

[S

1 -Infinity 1

CmplSolArray x = (CmplSolArray)
m.getVarByName ("x") ;
for (int[] (int[]1[1)

{ System.out.printf ("%5s %2d %n",

tuple: combinations.values ())

x.get (tuple) .name (),

Direct access to the variable vector
x [1 by its name

x.get (tuple) .activity ());
}
Cmpl m = new Cmpl ("assignment.cmpl"); Solves the example from subchapter
4.1 and displays all information about
m.setOption("%display nonzeros"); variables and constraints of all solu-
m.setOption ("%arg -solver cplex"); tion found
m.setOption ("%display solutionPool");
m.solve () ;
for (CmplSolution s m.solutionPool ()) { Solution number: 1
System.out.printf ("Solution number: %d %n", Objective value: 29.000000
(s.idx() + 1)) Objective status: integer
System.out.printf ("Objective value: S$f %n", optimal solution
s.value());
System.out.printf ("Objective status: %s %n",
s.status());
Variables:
System.out.println ("Variables:"); x[1,4] B 1 1
for (CmplSolElement v s.variables()) { x[2,3] B 1
System.out.printf ("%8s %$2s %2d %2.0f %$2.0f x[3,1] B 1
gn", v.name (), v.type(), v.activity(),
v.lowerBound (), v.upperBound());
} Constraints:
System.out.println ("Constraints:"); sos m[1] 1 1 1
for (CmplSolElement c s.constraints ()) { sos m[2] 1 1 1
System.out.printf ("%$8s %$2s %$2.0f %$2.0f %2.0f sos m[3] E 1 1 1
%n", c.name (), c.type(), c.activity(), sosil[l] L 1 -Infinity 1
c.lowerBound (), c.upperBound()); sos 1[3] L 1 -Infinity 1

CMPL 2.1.0 - Manual 195

} sos 1[4] L 1 -Infinity 1

} Solution number: 2
Objective wvalue: 29.000000
Objective status: integer

feasible solution
Variables:
x[1,4] B 1 0 1

4.4.3.5 Reading CMPL messages

Getter methods:

Cmpl.cmplMessages ()

Description: Returns a list of cmp1Msg objects that contain the CMPL messages

Return: ArrayList< list of CMPL messages
CmplMsg>

CmplMsg. type ()

Description: Returns the type of the messages

Return: String message type warning|error
CmplMsg.module ()
Description: Returns the name of the CMPL module in that the error or warning occurs
Return: String CMPL module
CmplMsg.location ()
Description: Returns the location where the error or warning occurs
Return: String location
CmplMsg.description ()

Description: Returns the a description of the error or warning message
Return: String description of the error or warning

Examples:

model = Cmpl ("diet.cmpl")

model.solve () ;

if (model.cmplStatus ()==Cmpl.CMPL_WARNINGS) { |If some warnings for the CMPL model
for (CmplMsg m: model.cmplMessages()) { |diet.cmpl appear the messages will be
System.out.printf ("%$s %$s %$s %s %s", shown.

CMPL 2.1.0 - Manual 196

m.type (), m.module(), m.location(),

m.description());

4.4.4 CmplExceptions

jCMPL provides its own exception handling. If an error occurs either by using jCmpl classes or in the CMPL
model a CmplException is raised by jCmpl automatically. This exception can be handled through using a
try-catch block.

try {
// do something
} catch (CmplException e) {

System.out.println(e);

4.5 Examples

4.5.1 The diet problem

4.5.1.1 Problem description and CMPL model

In this subchapter the jCMPL and jCMPL formulation of the diet problem already discussed in subchapter
2.4.1.1 is dealt with.

The first step is to formulate the CMPL model diet.cmpl where the sets and parameters that are created
in the pyCmpl script have to be specified in the CMPL header entry $data:

%$data : NUTR set, FOOD set, costs[FOOD], vitamin[NUTR,FOOD], vitMin[NUTR]

var:

X [FOOD] : integer([2..10];

obj:

cost: costs”T * x->min;

con:

vit: vitamin * x >= vitMin;

4.5.1.2 pyCMPL

The corresponding pyCMPL script diet . py is formulated as follows:

from pyCmpl import *

CMPL 2.1.0 - Manual 197

try:
model = Cmpl ("diet.cmpl")

nutr = CmplSet ("NUTR")
nutr.setValues (["A", "B1", "B2", "C"])

food = CmplSet ("FOOD")
food.setValues (["BEEF", "CHK","FISH", "HAM", "MCH", "MTL", "SPG", "TUR"])

costs = CmplParameter ("costs", food)
costs.setValues ([3.19, 2.59, 2.29, 2.89, 1.89, 1.99, 1.99, 2.49])

vitmin = CmplParameter ("vitMin",nutr)
vitmin.setValues ([700, 700, 700, 700])

vitamin = CmplParameter ("vitamin",nutr, food)
vitamin.setValues ([[60,8,8,40,15,70,25,60] , [20,0,10,40,35,30,50,20]
[10,20,15,35,15,15,25,151 ,[(15,20,10,10,15,15,15,1011)

model.setSets (nutr, food)

model.setParameters (costs,vitmin,vitamin)

model.solve ()

model.solutionReport ()

except CmplException as e:

print (e.msq)

4

\

Executing this pyCMPL model by using the command:

python diet.py

leads to the following output created by pyCMPL's standard solution report:

Problem diet.cmpl

Nr. of variables 8

Nr. of constraints 4

Objective name cost

Solver name HIGHS

Display variables (all)

Display constraints (all)

Objective status optimal

Objective value 101.14 (min!)

Variables

Name Type Activity LowerBound UpperBound Marginal
x [BEEF] I 2 2.00 10.00 -
x [CHK] I 8 2.00 10.00 -
x [FISH] I 2 2.00 10.00 -
x [HAM] I 2 2.00 10.00 -

CMPL 2.1.0 - Manual 198

x [MCH] I 10 2.00 10.00 -
x [MTL] I 10 2.00 10.00 -
x [SPG] I 10 2.00 10.00 -
% [TUR] I 2 2.00 10.00 -
Constraints
Name Type Activity LowerBound UpperBound Marginal
vit[A] G 1500.00 700.00 inf -
vit[B1] G 1330.00 700.00 inf -
vit[B2] G 860.00 700.00 inf -
vit[C] G 700.00 700.00 inf -
4.5.1.3 jCmpl
The corresponding jCMPL programme diet . java is formulated as follows:
import jCMPL.*;
public class Diet {
public static void main(String[] args) throws CmplException {
try {
Cmpl model = new Cmpl ("diet.cmpl");
CmplSet nutr = new CmplSet ("NUTR") ;
String[] nutrLst = {"A", "B1", "B2", "C"};
nutr.setValues (nutrLst) ;
CmplSet food = new CmplSet ("FOOD") ;
String[] foodLst = {"BEEF", "CHK", "FISH", "HAM", "MCH",
"MTL"’ "SPG"’ "TUR"};
food.setValues (foodLst) ;
CmplParameter costs = new CmplParameter ("costs", food);
Double[] costVec = {3.19, 2.59, 2.29, 2.89, 1.89, 1.99, 1.99, 2.49};
costs.setValues (costVec) ;
CmplParameter vitmin = new CmplParameter ("vitMin", nutr);
int [] vitminVec = { 700,700,700,700};
vitmin.setValues (vitminVec) ;
CmplParameter vitamin = new CmplParameter ("vitamin", nutr, food);
int[]1[] vitMat = { {60, 8, 8, 40, 15, 70, 25, 60},
{20, 0, 10, 40, 35, 30, 50, 20},
{10, 20, 15, 35, 15, 15, 25, 15},
{15, 20, 10, 10, 15, 15, 15, 10}};
vitamin.setValues (vitMat) ;
CMPL 2.1.0 - Manual 199

model.setSets (nutr, food);

model.setParameters (costs, vitmin, vitamin);

model.solve () ;

model.solutionReport () ;

} catch (CmplException e) {
System.out.println(e);

Executing this jCMPL programme leads to the following output created by jCMPL's standard solution report:

Problem diet.cmpl
Nr. of variables 8
Nr. of constraints 4

Objective name cost

Solver name HIGHS

Display variables (all)

Display vonstraints (all)

Objective status optimal

Objective value 101.14 (min!)

Variables

Name Type Activity LowerBound UpperBound Marginal
x [BEEF] I 2 2.00 10.00 -
x [CHK] I 8 2.00 10.00 -
x [FISH] I 2 2.00 10.00 -
x [HAM] I 2 2.00 10.00 -
x [MCH] I 10 2.00 10.00 -
x [MTL] I 10 2.00 10.00 -
x [SPG] I 10 2.00 10.00 -
x [TUR] I 2 2.00 10.00 -
Constraints

Name Type Activity LowerBound UpperBound Marginal
line[A] G 1500.00 700.00 Infinity -
line[B1] G 1330.00 700.00 Infinity -
line[B2] G 860.00 700.00 Infinity -
line[C] G 700.00 700.00 Infinity -

4.5.2 Transportation problem

4.5.2.1 Problem description and CMPL model

This subchapter discusses the pyCMPL formulation of the transportation problem from subchapter 2.4.1.7 .

CMPL 2.1.0 - Manual 200

The CMPL model transportation.cmpl can be formulated as follows:

%data : plants set, centers set,routes set[2], cl[routes], s[plants]

var:
x[routes]: real[0..];

obj:
costs: sum{ [i,Jj] in routes : c[i,J]1*x[1i,3] } ->min;

con:
{i in plants : supplies[i]: sum{j in routes *> [i,*] : x[i,]]} =
{J in centers: demands[j]: sum{i in routes *> [*,3J] : x[i,]]} <=

, d[centers]

sli]i}
df31:}

4.5.2.2 pyCMPL

The corresponding pyCMPL script transportation.py is formulated as follows:

from pyCmpl import *

try:
model = Cmpl ("transportation.cmpl")
routes = CmplSet ("routes",2)

routes.setvalues([[1,1],[1,2],[1,4],(2,2],(2,3],12,4],[3,11,(3,311])

plants = CmplSet ("plants")
plants.setValues (1, 3)

centers = CmplSet ("centers")

centers.setValues (1,4)

costs = CmplParameter ("c", routes)
costs.setValues ([3,2,6,5,2,3,2,4])

0

= CmplParameter ("s",plants)
.setValues ([5000,6000,25007)

0

O,

= CmplParameter ("d",centers)
.setValues ([6000,4000,2000,2500])

Q.

model.setSets (routes, plants, centers)

model.setParameters (costs, s, d)

model.setOutput (True)
model.setOption ("-display nonZeros")

model.solve ()

CMPL 2.1.0 - Manual 201

if model.

solverStatus SOLVER OK:

model.solutionReport ()

else:

print ("Solver failed "

"w

+ model.solver + " 4+ model.solverMessage)

except CmplException as e:

print (e.msqg)

Executing this pyCMPL model by using the command:

python tran

sportation.py

leads to the following output of CMPL and HiGHS (enabled with model.setOutput (True)) and the stand-

ard solution rep

transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
Problem

Nr. of variables
Nr. of constrain
Objective name
Solver name
Display variable

Display constrai

Objective status

ort:

CMPL version: 2.1.0

Authors: Thomas Schleiff, Mike Steglich

Distributed under the GPLv3

CMPL: Interpreting Cmpl code

CMPL: Writing model instance to Free-MPS file > /var/tmp/tmp.5.XFsNgN.mps

CMPL: Solving instance using HIGHS

Running HiGHS 1.7.2 (git hash: n/a): Copyright (c) 2024 HiGHS under MIT licence terms

Number of PL entries in BOUNDS section is 8

LP tmp.5.XFsNgN has 7 rows; 8 cols; 16 nonzeros

Coefficient ranges:

Matrix [le+00, 1e+00]

Cost [2e+00, 6e+00]

Bound [0e+00, 0e+00]

RHS [2e+03, 6e+03]

Presolving model

6 rows, 7 cols, 14 nonzeros Os

6 rows, 7 cols, 14 nonzeros Os

Presolve Reductions: rows 6(-1); columns 7(-1); elements 14 (-2)

Solving the presolved LP

Using EKK dual simplex solver - serial

Iteration Objective Infeasibilities num(sum)

0 5.0000000000e+03 Pr: 2(11000) Os

5 3.6500000000e+04 Pr: 0(0) Os

Solving the original LP from the solution after postsolve

Model status Optimal

Simplex iterations: 5

Objective value 3.6500000000e+04

HiGHS run time : 0.00

Writing the solution to /var/tmp/tmp.5.XFsNgN.sol

CMPL: Retrieving solution

CMPL: Writing solution to CmplSolution file > transportation cmpl_ px8sblck.csol

CMPL: Writing CmplMessages to file > transportation_cmpl_ px8sblck.cmsg
transportation.cmpl

8
ts 7

costs

HIGHS
s nonZeroVariables (all)
nts nonZeroConstraints (all)

OPTIMAL

CMPL 2.1.0 - Manual

202

Objective value 36500.00 (min!)

Variables

Name Type Activity LowerBound UpperBound Marginal
x[1,1] c 2500.00 0.00 inf 0.00
x[1,2] c 2500.00 0.00 inf 0.00
x[2,2] c 1500.00 0.00 inf 0.00
x[2,3] C 2000.00 0.00 inf 0.00
x[2,4] C 2500.00 0.00 inf 0.00
x[3,1] C 2500.00 0.00 inf 0.00
Constraints

Name Type Activity LowerBound UpperBound Marginal
supplies[1] E 5000.00 5000.00 5000.00 3.00
supplies[2] E 6000.00 6000.00 6000.00 6.00
supplies[3] E 2500.00 2500.00 2500.00 2.00
demands [1] L 5000.00 -inf 6000.00 0.00
demands [2] L 4000.00 -inf 4000.00 -1.00
demands [3] L 2000.00 -inf 2000.00 -4.00
demands [4] L 2500.00 -inf 2500.00 -3.00

4.5.2.3 jCMPL

The corresponding jCMPL script transportation.java is formulated as follows:

import JCMPL.*;

import java.util.ArrayList;

public class Transportation {

public static void main(String[] args) throws CmplException {

try {
Cmpl model = new Cmpl ("transportation.cmpl");

CmplSet routes = new CmplSet ("routes", 2);
int[][] arcs = { {1, 1}, {1, 2}, {1, 4}, {2, 2}, {2, 3},
{2, 4}, {3, 1}, {3, 3}};

routes.setValues (arcs) ;

CmplSet plants = new CmplSet ("plants");
plants.setValues(l, 3);

CmplSet centers = new CmplSet ("centers");

centers.setValues (1, 1, 4);

CmplParameter costs = new CmplParameter ("c", routes);
Integer[] costArr = {3, 2, 6, 5, 2, 3, 2, 4};

costs.setValues (costArr) ;

CMPL 2.1.0 - Manual 203

CmplParameter s = new CmplParameter ("s", plants);
int[] sList = {5000,6000,2500};

s.setValues (sList) ;

CmplParameter d = new CmplParameter ("d", centers);
int[] dArr = {6000, 4000, 2000, 2500};
d.setValues (dArr) ;

model.setSets (routes, plants, centers);

model.setParameters (costs, s, d);

model.setOutput (true) ;
model.setOption ("-display nonZeros");

model.solve () ;

if (model.solverStatus() == Cmpl.SOLVER OK) {
model.solutionReport () ;

} else {
System.out.println ("Solver failed " + model.solver () +

won

+ model.solverMessage()) ;

} catch (CmplException e) {

System.out.println(e);

Executing this jJCMPL programme leads to the following output of CMPL and HiGHS (enabled with model.-
setOutput (True)) and the standard solution report:

transportation>
transportation> CMPL version: 2.1.0
transportation> Authors: Thomas Schleiff, Mike Steglich
transportation> Distributed under the GPLv3
transportation>
transportation> CMPL: Interpreting Cmpl code
transportation> CMPL: Writing model instance to Free-MPS file > /var/tmp/tmp.5.XFsNgN.mps
transportation> CMPL: Solving instance using HIGHS
transportation> Running HiGHS 1.7.2 (git hash: n/a): Copyright (c) 2024 HiGHS under MIT licence terms
transportation> Number of PL entries in BOUNDS section is 8
transportation> LP tmp.5.XFsNgN has 7 rows; 8 cols; 16 nonzeros
transportation> Coefficient ranges:
transportation> Matrix [le+00, 1e+00]
[2e+00, 6e+00]
transportation> Bound [0e+00, 0e+00]
[2e+03, 6e+03]
transportation> Presolving model

transportation> Cost

transportation> RHS

transportation> 6 rows, 7 cols, 14 nonzeros Os

transportation> 6 rows, 7 cols, 14 nonzeros Os

transportation> Presolve : Reductions: rows 6(-1); columns 7(-1); elements 14 (-2)

CMPL 2.1.0 - Manual 204

transportation> Solving the presolved LP

transportation> Using EKK dual simplex solver - serial

transportation> Iteration Objective Infeasibilities num(sum)

transportation> 0 5.0000000000e+03 Pr: 2(11000) Os

transportation> 5 3.6500000000e+04 Pr: 0(0) Os

transportation> Solving the original LP from the solution after postsolve

transportation> Model status Optimal

transportation> Simplex iterations: 5

transportation> Objective value 3.6500000000e+04

transportation> HiGHS run time : 0.00

transportation> Writing the solution to /var/tmp/tmp.5.XFsNgN.sol

transportation>

transportation>

transportation> CMPL: Retrieving solution

transportation> CMPL: Writing solution to CmplSolution file > transportation_cmpl_px8sblck.csol
transportation> CMPL: Writing CmplMessages to file > transportation cmpl px8sblck.cmsg

Problem transportation.cmpl

Nr. of variables 8

Nr. of constraints 7

Objective name costs

Solver name HIGHS

Display variables nonZeroVariables (all)

Display constraints nonZeroConstraints (all

Objective status OPTIMAL

Objective value 36500.00 (min!)

Variables

Name Type Activity LowerBound UpperBound Marginal
x[1,1] C 2500.00 0.00 inf 0.00
x[1,2] C 2500.00 0.00 inf 0.00
x[2,2] C 1500.00 0.00 inf 0.00
x[2,3] C 2000.00 0.00 inf 0.00
x[2,4] C 2500.00 0.00 inf 0.00
x[3,1] C 2500.00 0.00 inf 0.00
Constraints

Name Type Activity LowerBound UpperBound Marginal
supplies[1] E 5000.00 5000.00 5000.00 3.00
supplies([2] E 6000.00 6000.00 6000.00 6.00
supplies[3] E 2500.00 2500.00 2500.00 2.00
demands [1] L 5000.00 -inf 6000.00 0.00
demands [2] L 4000.00 -inf 4000.00 -1.00
demands [3] L 2000.00 -inf 2000.00 -4.00
demands [4] L 2500.00 -inf 2500.00 -3.00

4.5.3 The shortest path problem

4.5.3.1 Problem description and CMPL model

Consider an undirected network G =(V,4) where V' is a set of nodes and 4 is a set of directed edges joining
pairs of nodes. The decision is to find the shortest path from a starting node s to a target node ¢. This prob-
lem can be formulated as an LP as follows (Hillier and Liebermann 2010, p. 383f.):

CMPL 2.1.0 - Manual 205

Z cij-xij->mm/

(i, jled
S.t.
1 ifi=s
Z Xy Z X ;= —1 ,l'fl.:l‘ YieVv
(i, jled (J.i)e4 0 , otherwise
x;=20;V (i, j)€A

The decision variables are x;; V€A with x;=1 if the edge ;= is used. The parameters
Cj ;Y €A define the distance between the nodes i and j, but can also are interpreted as the time a

vehicle takes to drive from node i to node ;.

This CMPL model can be formulated as follows whilst the sets 4 an ¥ and the parameters ¢;, ¢ and s are
defined in a pyCMPL script or jCMPL programme.

$data : A set[2], c[A], V set , s, t

par:

{ i in V: { i=s : rHs[i]:=1; |
i=t : rHs[i]:=-1; |
default: rHs[i]:=0;} }

var:

x[A] :reallO0..];

obj:

sum{ [i,3] in A: c[i,jl1*x[1i,J] } -> min;

con:
{ 1 in V: node[i]: sum{ j in (A *> [i,*]) : x[i,7]] } -

sum{ j in (A *> [*,i]) : x[3j,1i] '} = rHs[i];}

To describe the formulation of the shortest path problem in pyCMPL and jCMPL the simple example shown in
the following figure is used where the weights on the arcs are interpreted as the time in minutes a vehicle
needs to travel from a node i to a node ;.

CMPL 2.1.0 - Manual 206

It is assumed that the starting node is node 1 and the target node is node 7.

4.5.3.2 pyCMPL

The corresponding pyCMPL script shortest-path.py is formulated as follows:

from pyCmpl import *

try:

model = Cmpl ("shortest-path.cmpl")

routes = CmplSet ("A",2)

routes.setValues ([[1,2],11,4]1,[2,1]1,12,31,102,41,12,51,\
[3,2]1,13,51,1[4,1], [4,2],[51, [4,6]1,\
(5,21, [5,31,105,41,1[5,61,[5,71,\
[6,4],1[6,51,[6,71,[7,5],[7,6]1 1)

nodes = CmplSet ("V")

nodes.setValues (1,7)

c = CmplParameter ("c", routes)

c.setvalues((7,5,7,8,9,7,8,5,5,9,15,6,7,5,15,8,9,6,8,11,9,11])

sNode = CmplParameter ("s")
sNode.setValues (1)

tNode = CmplParameter ("t")
tNode.setValues (7)

model.setSets (routes, nodes)
model.setParameters (c, sNode, tNode)
model.solve ()

print ("Objective Value: ", model.solution.value)

for v in model.solution.variables:
if v.activity>0:

"w "w

print (v.name , , v.activity)

except CmplException as e:

print (e.msqg)

Executing this pyCMPL script through using the command:

python shortes-path.py

CMPL 2.1.0 - Manual 207

leads to the following output of the pyCMPL script:

Objective Value: 22.0

x[1,4] 1.0
x[4,6] 1.0
x[6,7] 1.0

The optimal route is 1-4—6—7 with a travelling time of 22 minutes.

4.5.3.3 jCMPL

The corresponding jCMPL programme shortest-path.java is formulated as follows:

import jCMPL.*;

public class ShortestPath ({

public static void main(String[] args) throws CmplException ({

try {
Cmpl m = new Cmpl ("shortest-path.cmpl");

CmplSet routes = new CmplSet ("A",2);

int[][] arcs = {{1,2},{1,4},{2,1},{2,3},{2,4},{2,5},
{3,2},{3,5},{4,1},{4,2},{4,5},{4,6},
{5,2},{5,3},1{5,4},{5,6},{5,7},
{6,4},{6,5},{6,7},{7,5},{7,6}};

routes.setValues (arcs) ;

CmplSet nodes = new CmplSet ("V");

nodes.setValues(1,7);

CmplParameter ¢ = new CmplParameter("c", routes);
Integer([] cArr = {7,5,7,8,9,7,8,5,5,9,15,6,7,5,15,8,9,6,8,11,9,11};

c.setValues (cArr) ;

CmplParameter sNode = new CmplParameter ("s");
sNode.setValues (1) ;

CmplParameter tNode new CmplParameter ("t");

tNode.setValues (7);

m.setSets (routes, nodes);

m.setParameters (c, sNode, tNode);

m.setOption("-display nonZeros");

//start CmplServer first with cmplServer -start

CMPL 2.1.0 - Manual 208

//model.connect ("http://127.0.0.1:8008") ;

m.solve () ;
if (m.solverStatus() == Cmpl.SOLVER OK) {
System.out.println ("Objective value A
m.solution () .value ());
for (CmplSolElement v : m.solution().variables()) {
System.out.println(v.name() + " " + v.activity());
}
} else {
System.out.println ("Solver failed " + m.solver() + " " +
m.solverMessage ()) ;

}
} catch (CmplException e) {
System.out.println(e);

}

Executing this jCMPL programme leads to the following output of the pyCMPL script:

Objective value :22.0
x[1,4]1 1.0
x[4,6] 1.0
x[6,7] 1.0

As in pyCMPL the optimal route is 1-4—6—7 with a travelling time of 22 minutes.

4.5.4 Solving randomized shortest path problems in parallel

4.5.4.1 Problem description

For the last example it was shown that the optimal route travelling from node 1 to node 7 is 1-4—6—7.
This solution is based on the assumption that the travelling times between nodes are certain. This example
describes how a randomized shortest path problem can be solved where subproblems describing random
situations are solved in own threads in parallel.

4.5.4.2 pyCMPL

Assuming that the starting node is node 1 and the target node is node 7 the corresponding pyCMPL script
shortest-path-threads.py is formulated as follows:

1 from pyCmpl import *

2 import random

CMPL 2.1.0 - Manual 209

try:
routes = CmplSet ("A",2

O J o U1 b W

routes.setValues ([[1,2]1,[1,4]1,1[2,11,12,31,12,4]1,12,5],\

[3,21,103,51,104,11,104,21, 104,51, [4,6],\
[5,21,15,31,[5,41,[5,61,[5,71,\

9 (6,41,16,51,106,71,17,51,1[7,61 1)

10

11 nodes = CmplSet ("V")

12 nodes.setValues (1, 7)

13

14 cList = [(7,5,7,8,9,7,8,5,5,9,15,6,7,5,15,8,9,6,8,11,9,11]

15

16 sNode = CmplParameter ("s")

17 sNode.setValues (1)

18

19 tNode = CmplParameter ("t")

20 tNode.setValues (7)

21

22 models= []
23 randC = []

24 for i in range(5):

25 models.append (Cmpl ("shortest-path.cmpl"))

26 models[i] .setSets (routes, nodes)

27

28 tmpC =[]

29 for m in clList:

30 tmpC.append(m + random.randint (-40,40)/10)
31

32 randC.append (CmplParameter ("c", routes))

33 randC[i] .setValues (tmpC)

34

35 models[i] .setParameters (randC[i], sNode, tNode)
36

37 for m in models:

38 m.start ()

39

40 for m in models:

41 m.join ()

42

43 i=0

44 for m in models:

45 print ("problem : " , i1 , " needed time " , m.solution.value)
46

47 for v in m.solution.variables:

48 if v.activity>0:

CMPL 2.1.0 - Manual 210

49 print(v.name , " " , v.activity)
50 i=1+1

51

52 except CmplException as e:

53 print (e.msqg)

54 except:
56 print ("Unexpected error:", sys.exc info() [0])
57

This script uses the same sets and parameters as before but for each of the five models instantiated in line
25 a new parameter array c is created whilst the original array c is changed by random numbers in line 30.
In line 38 all of the models are starting and in line 41 the pyCmpl script is waiting for the termination of all
of the models.

Executing this pyCMPL script through using the command:

python shortes-path-threads.pyshortest-path-threads.py

can lead to the following output of the pyCMPL script, but every new run will show different results because
of the random numbers.

problem : 0 needed time 18.2
x[1,4] 1.0
x[4,6] 1.0
x[6,7] 1.0
problem : 1 needed time 17.5
x[1,4] 1.0
x[4,6] 1.0
x[6,7] 1.0
problem : 2 needed time 20.2
x[1,2] 1.0
x[2,5] 1.0
x[5,7] 1.0
problem : 3 needed time 14.6
x[1,2] 1.0
x[2,5] 1.0
x[5,7] 1.0
problem : 4 needed time 19.1
x[1,4] 1.0
x[4,6] 1.0
x[6,7] 1.0

Depending on the uncertain traffic situations two different routes between the nodes 1—7 can be optimal:
1-4—-6—7 and 1-2—-5-7.

CMPL 2.1.0 - Manual 211

4.5.4.3 jCMPL

Assuming that the staring node is node 1 and the target node is node 7 the corresponding jCMPL pro-
gramme shortest-path.java is formulated as follows:

1 import java.util.ArraylList;

2 import jCMPL.*;

3

4 public class ShortestPathThreads {

5 public static void main(String[] args) throws CmplException {
6

7 try |

8 CmplSet routes = new CmplSet ("A",2);

9 int[][] arcs = {{1,2},{1,4},{2,1},{2,3},{2,4},1{2,5},
10 {3,2},{(3,5},{4,1},{4,2},{4,5},1{4,6},
11 {5,2},{5,3},{5,4},{5,6},{5,7},

12 {6,4},{6,5},{6,7},{7,5},{7,6}};

13 routes.setValues (arcs) ;

14

15 CmplSet nodes = new CmplSet ("V");

16 nodes.setValues(1,7);

17

18 Integer([] cArr = {7,5,7,8,9,7,8,5,5,9,15,6,7,5,15,8,
19 9,6,8,11,9,11};

20

21 CmplParameter sNode = new CmplParameter ("s");

22 sNode.setValues (1) ;

23

24 CmplParameter tNode = new CmplParameter ("t");

25 tNode.setValues (7) ;

26

27 ArrayList<Cmpl> models = new ArrayList<Cmpl>();

28 Arraylist<CmplParameter> randC = new ArraylList<CmplParameter>();
29

30 for (int 1 = 0; 1 < 5; i++) {

31 models.add (new Cmpl ("shortest-path.cmpl"));

32 models.get (1) .setSets (routes, nodes);

33 randC.add (new CmplParameter ("c", routes));

34

35 ArrayList<Double> tmpC = new ArrayList<Double>();
36 for (Integer cArrl : cArr) {

37 tmpC.add (Double.valueOf (cArrl) +

38 Double.valueOf (-40 + (Math.random () * 40))/10);
39 }

40 randC.get (1) .setValues (tmpC) ;

41 models.get (i) .setParameters (randC.get (i), sNode, tNode);

CMPL 2.1.0 - Manual 212

42 models.get (i) .setOption("-display nonZeros");

43 }

44

45 for (Cmpl c : models) {

46 c.start();

47 }

48

49 for (Cmpl c : models) {

50 c.join();

51 }

52

53 int 1 = 1;

54 for (Cmpl c : models) {

56 System.out.println("model : " + String.valueOf (i) +
57 " needed time : " + c.solution () .value());

58

59 for (CmplSolElement v : c.solution().variables()) {
60 System.out.println(v.name() + " " + v.activity());
61 }

62 i++;

63 }

64 } catch (CmplException | InterruptedException e) {

65 System.out.println (e);

66 }

67 }

68 }

This programme uses the same sets and parameters as before but for each of the five models instantiated in
line 31 a new parameter array c is created whilst the original array c¢ is changed by random numbers in lines
37 and 38. In line 46 all of the models are starting and in line 50 the programme is waiting for the termina-
tion of all of the models.

Executing this jJCMPL programme can lead to the following output, but every new run will show different res-
ults because of the random numbers.

model : 1 needed time : 17.0396
x[1,4]

x[4,6]

x[6,7] .

model : 2 needed time : 15.6087
x[1,4]

x[4,6]

x[6,7] .

model : 3 needed time : 13.0639
x[1,4]

x[4,6]

CMPL 2.1.0 - Manual 213

x[6,7] 1.0

model : 4 needed time : 11.4603
x[1,4]

x[4,6]

x[6,7] .

model : 5 needed time : 14.3389
x[1,2]

x[2,5]

x[5,7]

Depending on the uncertain traffic situations two different routes between 1—7 the nodes can be optimal:
1-4—-6—7 and 1-2—-5—7 .

4.5.5 Column generation for a cutting stock problem

4.5.5.1 Problem description and CMPL model

The following pyCMPL script and the corresponding jCMPL programme including the example are based on
the AMPL formulation of a column generator for a cutting stock problem and is taken from (Fourer et.al.
2003, p. 304ff). In this cutting stock problem long raw rolls of paper have to be cut up into combinations of
smaller widths that have to meet given orders and the objective is to minimize the waste.

In the example, the raw width is 110" and the demands for particular widths are given in the following table:

orders (demand) withs
48 20"
35 45"
24 50"
10 55"
8 75"

Fourer, Gay & Kernigham use the Gilmore-Gomory procedure to define cutting patterns by involving two lin-
ear programmes.

The first model is a cutting optimisation model that finds the minimum number of raw rolls with a given set
of possible cutting patterns subject to fulfilling the orders for the particular widths. This problem can be for-
mulated as in the CMPL file cut .cmpl as follows:

%data : rollwidth,widths set,patterns set,orders[widths], nbr[widths, patterns]

var:

cut [patterns]: integer[0..];

obj:
number: sum{ j in patterns: cut[j] }->min;

CMPL 2.1.0 - Manual 214

con:
{i in widths: fi11[i]:
sum{ j in patterns : nbr[i,j] * cut[j] } >= orders[i];

}

The parameter rollwidth defines the width of the raw rolls, the set widths defines the widths to be cut,
the set patterns the set of the patterns, the parameter orders the number of orders per width and the
parameters nbr[i, 7] the number of rolls of width i in pattern 5. The variables are the cut [§] and they
define how many cuts of a pattern 5 are to be produced.

The second model is the pattern generation model that is indented to identify a new pattern that can be
used in the cutting optimisation.

%data : widths set, price[widths], rollWidth
var:

use[widths]: integer[0..];

reducedCosts : real;
obj:

sum{ 1 in widths: price[i] * use[i]} -> max;

con:

sum{ i in widths : i1 * use[i] } <= rollWidth;

This model in the CMPL file cut-pattern.cmpl requires as specified in the $data entry the set widths,
the parameter rol1Width and a parameter vector price, that contains the marginals of the constraints
fill of a solved cut.cmpl problem with a relaxation of the integer variables cut [].

It is a knapsack problem that "fills" a knapsack (here a raw roll with a given width rollwidth) with the
most valuable things (here the desired widths via the variables use [1]) where the value of a width i is
specified by the price[i].

4.5.5.2 pyCMPL

The relationship between these two CMPL models and the entire cutting optimisation procedure is controlled
by the following pyCMPL script cut.py

1 from pyCmpl import *

2 import math

3

4 try:

5 cuttingOpt = Cmpl ("cut.cmpl")

6 patternGen = Cmpl ("cut-pattern.cmpl")
7

8 cuttingOpt.setOption ("-no-remodel")

9 cuttingOpt.setOption ("-solver cplex")

CMPL 2.1.0 - Manual 215

10 patternGen.setOption ("-solver cplex")
11

12 r = CmplParameter ("rollWidth")

13 r.setValues (110)

14

15 w = CmplSet ("widths")

16 w.setValues ([20, 45, 50, 55, 75])
17

18 o = CmplParameter ("orders",w)

19 o.setValues ([48, 35, 24, 10, 8 1)
20

21 nPat=w.len

22 p = CmplSet ("patterns")

23 p.setValues (1,nPat)

24

25 nbr = []

26 for i in range (nPat):

27 nbr.append([0 for j in range (nPat) 1)
28

29 for i in w.values:

30 pos = w.values.index (1)

31 nbr[pos] [pos] = int (math.floor(r.value / 1))
32

33 n = CmplParameter ("nbr", w, p)

34 n.setValues (nbr)

35

36 price = []

37 for i in range(w.len):

38 price.append(0)

39

40 pr = CmplParameter ("price", w)

41 pr.setValues (price)

42

43 cuttingOpt.setSets (w,p)

44 cuttingOpt.setParameters(r, o, n)
45

46 patternGen.setSets (w)

47 patternGen.setParameters (r, pr)

48

49 ri = cuttingOpt.setOption("-int-relax")
50

51 while True:

52 cuttingOpt.solve ()

53

54 for i in w.values:

55 pos = w.values.index (1)

CMPL 2.1.0 - Manual 216

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

price[pos] = cuttingOpt.fill[i].marginal

pr.setValues (price)

patternGen.solve ()

if (l-patternGen.solution.value) < -0.00001:
nPat = nPat + 1
p.setValues (1,nPat)
for i in w.values:
pos = w.values.index (1)
nbr[pos] .append(patternGen.use[i] .activity)
n.setValues (nbr)
else:

break

cuttingOpt.delOption (ri)

cuttingOpt.solve ()

print ("Objective value: " , cuttingOpt.solution.value , "\n")

print ("Pattern:")

vStr=" ["
for j in p.values:
vStr+= " &%d " % J

print (vStr)

for i in range(len(w.values)):
vStr="%2d | " % w.values[i]
for j in p.values:
vStr += " &d " % nbr[i][j-1]
print (vStr)
print ("\n")

for j in p.values:
if cuttingOpt.cut[j].activity>0:
print ("%2d pieces of pattern: %d" % (cuttingOpt.cut[j].activity,
for 1 in range(len(w.values)):

print (" width ", w.values([i] , " - " , nbr[i]l[j-1])

except CmplException as e:

print (e.msqg)

7))

CMPL 2.1.0 - Manual 217

In the lines 9 and 10, Cplex is chosen as solver for both models instantiated in the lines 5 and 6. The option
-no-remodel is needed to prevent some unwanted effects caused by CMPL-internal transformations. In
the next lines 12-19 the parameters rollwidth and orders and the set widths are created and the
corresponding data are assigned. The lines 25-34 are intended to create an initial set of patterns whilst the
matrix nbr contains only one pattern per width, where the diagonal elements are equal to the maximal pos-
sible number of rolls of the particular width. After creating the vector price with null values in the lines 36-
41 all relevant sets and parameters are committed to both cmp1 objects (lines 43-47).

In the next lines the Gilmore-Gomory procedure is performed.
1. Solving the cutting optimisation problem cut . cmpl with an integer relaxation (line 49 and 52).

2. Assigning the shadow prices cuttingOpt.fill[i].marginal to the corresponding elements
price[i] for each pattern (lines 54-56).

3. Solving the pattern generation model cut-pattern.cmpl (line 60).
4, If (1 - optimal objective value) is approximately < 0 (line 62)

then add a new pattern using the activities patternGen.use[i].activity for all elements
in widths (lines 65-67) and jump to step 1,
else

Solve the final cutting optimisation problem cut.cmpl as integer programme (lines 72 and 74)

After finding the final solution the next lines (lines 76-99) are intended to provide some information about
the final integer solution.

Executing this pyCMPL model through using the command:

python cut.py

leads to the following output of the pyCMPL script:

Objective value: 47.0

Pattern:

200 5 0 0 O O 1 1 3
45 1 0 2 0 0 O 0 2 O
50] 0 0 2 0 O O 0 1
51 0 0 0 2 0O 0 0 O
7% 1 0 0 0 O 1 1 0 O

8 pieces of pattern: 3

width 20 - 0
width 45 - O
width 50 - 2
width 55 - 0

CMPL 2.1.0 - Manual 218

width 75 - 0

5 pieces of pattern: 4

width 20 - 0
width 45 - 0
width 50 - 0
width 55 - 2
width 75 - 0

8 pieces of pattern: 6
width 20 - 1
width 45 - 0
width 50 - 0
width 55 - 0
width 75 - 1

18 pieces of pattern: 7
width 20 - 1
width 45 - 2
width 50 - 0
width 55 - 0
width 75 - 0

8 pieces of pattern: 8
width 20 - 3
width 45 - 0
width 50 - 1
width 55 - 0
width 75 - 0

4.5.5.3 jCMPL

The relationship between these cut-pattern.cmpl and cut.cmpl and the entire cutting optimisation
procedure is controlled by the following jCMPL programme CuttingStock.java.

1 import jCMPL.*;

2 import java.util.ArrayList;

3

4 public class CuttingStock {

5

6 public static void main(String[] args) throws CmplException {
7

8 try {

9 Cmpl cuttingOpt = new Cmpl ("cut.cmpl");

10 Cmpl patternGen = new Cmpl ("cut-pattern.cmpl");
11 cuttingOpt.setOption ("-no-remodel") ;

12 cuttingOpt.setOption ("-solver cplex");

13 patternGen.setOption ("-solver cplex");

14

CMPL 2.1.0 - Manual 219

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

CmplParameter r = new CmplParameter ("rollWidth");
r.setValues (110);

CmplSet w = new CmplSet ("widths");
int[] wVals = {20, 45, 50, 55, 75};

w.setValues (wVals) ;

CmplParameter o = new CmplParameter ("orders", w);
int[] oVals = {48, 35, 24, 10, 8};

o.setValues (oVals) ;

int nPat = w.len();

CmplSet p = new CmplSet ("patterns");
p.setValues (1, nPat);

ArrayList<ArrayList<Long>> nbr = new ArrayList<>();
for (int i = 0; 1 < nPat; i++) {

ArrayList<Long> nbrRow = new ArrayList<>();
for (int j = 0; j < nPat; j++) {

if (1 == 3) {
Double nr = Math.floor (((Integer) r.value())
((int[]) w.values()) [1]):;
nbrRow.add (nr.longValue());
} else {

nbrRow.add (Long.valueOf (0));

}
nbr.add (nbrRow) ;

CmplParameter n = new CmplParameter ("nbr", w, p):;

n.setValues (nbr) ;

Double[] price = new Double[w.len()];
for (int i = 0; i < price.length; 1i++) {

price[i] = 0.0;

CmplParameter pr = new CmplParameter ("price", w);

pr.setValues (price);

cuttingOpt.setSets (w, p);

cuttingOpt.setParameters(r, o, n);

/

CMPL 2.1.0 - Manual

220

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

patternGen.setSets (w) ;

patternGen.setParameters(r, pr);

int ri = cuttingOpt.setOption("-int-relax");

while (true) {
cuttingOpt.solve () ;

CmplSolArray fill =
(CmplSolArray) cuttingOpt.getConByName ("fill");

int pos = 0;

for (int with : (int[]) w.values()) {
price[pos] = fill.get (with) .marginal ()
pos++;

pr.setValues (price);

patternGen.solve();
CmplSolArray use =
(CmplSolArray) patternGen.getVarByName ("use");

if (1 - patternGen.solution().value() < -0.00001) {
nPat++;
p.setValues (1, nPat);
for (int i = 0; i < w.len(); 1i++) {
ArrayList<Long> tmpList = nbr.get(i);
tmpList.add ((Long) use.get(w.get(i)) .activity());
nbr.set (i, tmpList);
}
n.setValues (nbr) ;
} else {

break;

}
cuttingOpt.delOption (ri) ;

cuttingOpt.solve () ;
CmplSolArray cut =

(CmplSolArray) cuttingOpt.getVarByName ("cut") ;

System.out.printf ("Objective value: %4.2f%n%n",

cuttingOpt.solution () .value());

System.out.printf ("Pattern:\n");

CMPL 2.1.0 - Manual

221

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

System.out.printf (" [")

for (int j : (ArrayList<Integer>) p.values()) {
System.out.printf (" %d ", 3J);

}

System.out.printf ("\n------------———————————————— \n");
for (int i = 0; 1 < w.len(); i++) {
System.out.printf ("%2d | ", w.get(i)):;
for (int j : (ArraylList<Integer>) p.values()) {

System.out.printf (" %d ", nbr.get(i).get(j - 1));
}
System.out.printf ("\n");
}
System.out.printf ("\n") ;
for (int j : (ArraylList<Integer>) p.values()) {
if ((Long) cut.get(j).activity() > 0) {
System.out.printf ("%$2d pieces of pattern: %d %n",
(Long) cut.get(j) .activity (), 3J):;
for (int i = 0; i < w.len(); i++) {
System.out.printf ("\twidth %d - %d%n",
w.get (i), nbr.get(i).get(j - 1));

} catch (CmplException e) {

System.err.println (e);

}

In the lines 12 and 13, Cplex is chosen as solver for both models instantiated in the lines 9 and 10. The op-
tion -no-remodel is needed to prevent some unwanted effects caused by CMPL-internal transformations.

In the next lines 15-24 the parameters rol1lwidth and orders and the set widths are created and the

corresponding data are assigned. The lines 28-45 are intended to create an initial set of patterns whilst the
matrix nbr contains only one pattern per width, where the diagonal elements are equal to the maximal pos-

sible number of rolls of the particular width. After creating the vector price with null values in the lines 55-

56 all relevant sets and parameters are committed to both cmp1 objects (lines 58-62).

In the next lines the Gilmore-Gomory procedure is performed.

5.

6.

Solving the cutting optimisation problem cut.cmpl with an integer relaxation (line 64 and 67).

Assigning the shadow prices cuttingOpt.fill[i] .marginal to the corresponding elements
price[i] for each pattern (lines 73-76).

Solving the pattern generation model cut-pattern.cmpl (line 80).

If (1 — optimal objective value) is approximately < 0 (line 84)

CMPL 2.1.0 - Manual 222

then add a new pattern using the activities patternGen.use[i].activity for all elements
in widths (lines 87-91) and jump to step 1.

else
Solve the final cutting optimisation problem cut.cmpl as integer programme (line 97 and 99)

After finding the final solution the next lines (lines 100-135) are intended to provide some information about
the final integer solution.

Executing this jCMPL model leads to the following output:

Objective value: 47.00

Pattern:

200 5 0 0 O O 1 1 3
451 0 2 0 0 0O 0 2 O
50] 0 0 2 0 O O 0 1
51 0 0 0 2 0O 0 0 O
7% 1 0 0 0 O 1 1 0 O

8 pieces of pattern: 3
width 20 - 0
width 45 - 0
width 50 - 2
width 55 - 0
width 75 - 0

5 pieces of pattern: 4
width 20 - 0
width 45 - 0
width 50 - 0
width 55 - 2
width 75 - 0

8 pieces of pattern: 6
width 20 - 1
width 45 - 0
width 50 - 0
width 55 - 0
width 75 - 1

18 pieces of pattern: 7
width 20 - 1
width 45 - 2
width 50 - 0
width 55 - 0
width 75 - 0

8 pieces of pattern: 8

CMPL 2.1.0 - Manual 223

width
width
width
width
width

20
45
50
55
75

o O B O W

CMPL 2.1.0 - Manual

224

5 Authors and Contact

- CMPL
Thomas Schleiff - Halle(Saale), Germany

Mike Steglich - Technical University of Applied Sciences Wildau, Germany - mike.steglich@th-wildau.de

+ Coliop, pyCMPL and CMPLServer
Mike Steglich

+ jCMPL
Mike Steglich

Bernhard Knie — formerly Technical University of Applied Sciences Wildau, Germany

- Contact:
¢/o Mike Steglich
Professor of Business Administration, Quantitative Methods and Management Accounting

Technical University of Applied Sciences Wildau
Faculty of Business, Administration and Law
Hochschulring 1

15745 Wildau (Germany)

Tel.: +493375 / 508-365
Fax.: +493375 / 508-566

mike.steglich@th-wildau.de
« Support via mailing list

Please use GitHub to get support, to post bugs or to communicate wishes.

https://github.com/MikeSteglich/Cmpl2/issues.

CMPL 2.1.0 - Manual 225

References

- Achterberg, T. 2009. SCIP - solving constraint integer programs. Mathematical Programming Com-
putation Volume 1 Number 1. 1-41.

« Coulouris, G.F.; J. Dollimore, T. Kindberg, G. Blai. 2012. Distributed Systems : Concepts and Design,
5th ed., Addison-Wesley.

« Fourer, R.,, D. M. Gay, B. W. Kernighan. 2003. AMPL.: A Modeling Language for Mathematical Pro-
gramming, 2nd ed. Duxbury Press, Pacific Grove, CA.

« Anderson, D. R., D. J. Sweeney, Th. A. Williams, K. Martin. 2011. An Introduction to Management
Science : Quantitative Approaches to Decision Making. 13th ed.. South-Western.

« Fourer, R, J. Ma, R. K. Martin. 2010. optimisation Services: A Framework for Distributed optimisa-
tion. Operations Research 58(6). 1624-1636.

« GLPK. 2014. GVU Linear Programming Kit Reference Manual for GLPK Version 4.54.

« Hillier, F. S., G. 1. Lieberman. 2010. Introduction to Operations Research. 9th ed.. McGraw-Hill
Higher Education.

- Foster, 1., C. Kesselman (editors). 2004. 7he Grid2.: 2nd Edition. Blueprint for a New Computing In-
frastructure, Kindle ed., Morgan Kaufmann Publishers Inc.

« Kshemkalyani, A.D., M. Singhal, M. 2008. Distributed Computing — Principles, Algorithms, and Sys-
tems, Kindle ed., Cambridge University Press.

« St Laurent, S., J. Johnston, E. Dumbill. 2001. Programming Web Services with XML-RPC, 1st ed.,
O'Reilly.

CMPL 2.1.0 - Manual 226

	1 About CMPL
	2 CMPL Language reference manual
	2.1 CMPL elements
	2.1.1 General structure of a CMPL model
	2.1.2 Statements and expressions
	2.1.3 Data types and arrays
	2.1.3.1 Data types
	2.1.3.2 Sets
	2.1.3.3 Arrays
	2.1.3.4 Special values
	2.1.3.5 Functions and operations for arrays

	2.1.4 Object definitions
	2.1.4.1 Assignment attributes
	2.1.4.2 Sections
	2.1.4.3 Special forms of assignments
	2.1.4.4 Examples for definitions of parameters and variables

	2.1.5 User messages
	2.1.6 Code blocks
	2.1.6.1 Overview
	2.1.6.2 Code block symbols
	2.1.6.3 Control commands in code blocks
	2.1.6.4 Validity scope of symbols
	2.1.6.5 Validity scope of sections
	2.1.6.6 Code block as statement or expression
	2.1.6.7 Using a formula as a code block header
	2.1.6.8 Specific control structures
	2.1.6.9 Multithreading

	2.1.7 Names for rows and columns
	2.1.7.1 Name prefix
	2.1.7.2 Explicit control of the name prefix
	2.1.7.3 Explicitly set the name for rows and columns

	2.1.8 Extensions of CMPL
	2.1.8.1 Logical constraints
	2.1.8.2 Products of decision variables
	2.1.8.3 Container values and class-like constructs
	2.1.8.4 Special ordered sets
	2.1.8.5 Other model reformulations

	2.1.9 Short Language reference

	2.2 CMPL Header
	2.2.1 CMPL Header elements
	2.2.2 Include
	2.2.3 CmplData
	2.2.3.1 CmplData in CMPL Header
	2.2.3.2 CmplData file format

	2.2.4 CmplXlsData
	2.2.4.1 CmplXlsData in CMPL Header
	2.2.4.2 CmplXlsData file format

	2.3 Incompatibilities with Cmpl 1.12
	2.4 Examples
	2.4.1 Selected decision problems
	2.4.1.1 The diet problem
	2.4.1.2 Production mix
	2.4.1.3 Production mix including thresholds and step-fixed costs
	2.4.1.4 Production mix with user-defined functions for thresholds and step-fixed costs
	2.4.1.5 The knapsack problem
	2.4.1.6 The standard transport problem
	2.4.1.7 Transportation problem using a 2-tuple set
	2.4.1.8 Transhipment problem
	2.4.1.9 Transhipment problem using Excel via CmplXlsData
	2.4.1.10 Assignment problem
	2.4.1.11 Quadratic assignment problem
	2.4.1.12 Quadratic assignment problem using the solutionPool option
	2.4.1.13 Generic travelling salesman problem

	2.4.2 Other selected examples
	2.4.2.1 Solving the knapsack problem
	2.4.2.2 Finding the maximum of a concave function using the bisection method

	3 CMPL software package
	3.1 CMPL software package in a glance
	3.2 Download and installation
	3.3 CMPL
	3.3.1 Running CMPL
	3.3.2 Usage of the CMPL command line tool
	3.3.3 Using CMPL with several solvers
	3.3.3.1 HiGHS
	3.3.3.2 SCIP
	3.3.3.3 CBC
	3.3.3.4 GLPK
	3.3.3.5 Gurobi
	3.3.3.6 CPLEX
	3.3.3.7 Other solvers

	3.4 Coliop
	3.5 CMPLServer
	3.5.1 Single server mode
	3.5.2 Grid mode
	3.5.3 Reliability and failover

	3.6 pyCMPL
	3.7 jCMPL
	3.8 Input and output file formats
	3.8.1 Overview
	3.8.2 CMPL and CmplData
	3.8.3 Free-MPS
	3.8.4 CmplInstance
	3.8.5 ASCII or CSV result files
	3.8.6 CmplSolutions
	3.8.7 CmplMessages

	4 CMPL's APIs
	4.1 Creating Python and Java applications with a local CMPL installation
	4.1.1 pyCMPL
	4.1.2 jCMPL

	4.2 Creating Python and Java applications using CMPLServer
	4.2.1 pyCMPL
	4.2.2 jCMPL

	4.3 pyCMPL reference manual
	4.3.1 CmplSets
	4.3.2 CmplParameters
	4.3.3 Cmpl
	4.3.3.1 Establishing models
	4.3.3.2 Manipulating models
	4.3.3.3 Solving models
	4.3.3.4 Reading solutions
	4.3.3.5 Reading CMPL messages

	4.3.4 CmplExceptions

	4.4 jCMPL reference manual
	4.4.1 CmplSets
	4.4.2 CmplParameters
	4.4.3 Cmpl
	4.4.3.1 Establishing models
	4.4.3.2 Manipulating models
	4.4.3.3 Solving models
	4.4.3.4 Reading solutions
	4.4.3.5 Reading CMPL messages

	4.4.4 CmplExceptions

	4.5 Examples
	4.5.1 The diet problem
	4.5.1.1 Problem description and CMPL model
	4.5.1.2 pyCMPL
	4.5.1.3 jCmpl

	4.5.2 Transportation problem
	4.5.2.1 Problem description and CMPL model
	4.5.2.2 pyCMPL
	4.5.2.3 jCMPL

	4.5.3 The shortest path problem
	4.5.3.1 Problem description and CMPL model
	4.5.3.2 pyCMPL
	4.5.3.3 jCMPL

	4.5.4 Solving randomized shortest path problems in parallel
	4.5.4.1 Problem description
	4.5.4.2 pyCMPL
	4.5.4.3 jCMPL

	4.5.5 Column generation for a cutting stock problem
	4.5.5.1 Problem description and CMPL model
	4.5.5.2 pyCMPL
	4.5.5.3 jCMPL

	5 Authors and Contact

